Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons

2007 ◽  
Vol 293 (2) ◽  
pp. G484-G492 ◽  
Author(s):  
Shuxia Wan ◽  
F. Holly Coleman ◽  
R. Alberto Travagli

It is known that cholecystokinin (CCK) acts in a paracrine fashion to increase pancreatic exocrine secretion via vagal circuits. Recent evidence, however, suggests that CCK-8s actions are not restricted to afferent vagal fibers, but also affect brain stem structures directly. Within the brain stem, preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) send efferent fibers to subdiaphragmatic viscera, including the pancreas. Our aims were to investigate whether DMV neurons responded to exogenously applied CCK-8s and, if so, the mechanism of action. Using whole cell patch-clamp recordings we show that perfusion with CCK-8s induced a concentration-dependent excitation in ∼60% of identified pancreas-projecting DMV neurons. The depolarization was significantly reduced by tetrodotoxin, suggesting both direct (on the DMV membrane) and indirect (on local synaptic circuits) effects. Indeed, CCK-8s increased the frequency of miniature excitatory currents onto DMV neurons. The CCK-A antagonist, lorglumide, prevented the CCK-8s-mediated excitation whereas the CCK-B preferring agonist, CCK-nonsulfated, had no effect, suggesting the involvement of CCK-A receptors only. In voltage clamp, the CCK-8s-induced inward current reversed at −106 ± 3 mV and the input resistance increased by 150 ± 15%, suggesting an effect mediated by the closure of a potassium conductance. Indeed, CCK-8s reduced both the amplitude and the time constant of decay of a calcium-dependent potassium conductance. When tested with pancreatic polypeptide (which reduces pancreatic exocrine secretion), cells that responded to CCK-8s with an excitation were, instead, inhibited by pancreatic polypeptide. These data indicate that CCK-8s may control pancreas-exocrine secretion also via an effect on pancreas-projecting DMV neurons.

2007 ◽  
Vol 293 (2) ◽  
pp. G493-G500 ◽  
Author(s):  
Eddy Viard ◽  
Zhongling Zheng ◽  
Shuxia Wan ◽  
R. Alberto Travagli

Cholecystokinin (CCK) has been proposed to act in a vagally dependent manner to increase pancreatic exocrine secretion via actions exclusively at peripheral vagal afferent fibers. Recent evidence, however, suggests the CCK-8s may also affect brain stem structures directly. We used an in vivo preparation with the aims of 1) investigating whether the actions of intraduodenal casein perfusion to increase pancreatic protein secretion also involved direct actions of CCK at the level of the brain stem and, if so, 2) determining whether, in the absence of vagal afferent inputs, CCK-8s applied to the dorsal vagal complex (DVC) can also modulate pancreatic exocrine secretion (PES). Sprague-Dawley rats (250–400 g) were anesthetized and the common bile-pancreatic duct was cannulated to collect PES. Both vagal deafferentation and pretreatment with the CCK-A antagonist lorglumide on the floor of the fourth ventricle decreased the casein-induced increase in PES output. CCK-8s microinjection (450 pmol) in the DVC significantly increased PES; the increase was larger when CCK-8s was injected in the left side of the DVC. Protein secretion returned to baseline levels within 30 min. Microinjection of CCK-8s increased PES (although to a lower extent) also in rats that underwent complete vagal deafferentation. These data indicate that, as well as activating peripheral vagal afferents, CCK-8s increases pancreatic exocrine secretion via an action in the DVC. Our data suggest that the CCK-8s-induced increases in PES are due mainly to a paracrine effect of CCK; however, a relevant portion of the effects of CCK is due also to an effect of the peptide on brain stem vagal circuits.


1989 ◽  
Vol 24 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Annik Langlois ◽  
Tristan Corring ◽  
Jean-Claude Cuber ◽  
Anne Marie Gueugneau ◽  
Florence Levenez ◽  
...  

1979 ◽  
Vol 19 (3B) ◽  
pp. 843-848 ◽  
Author(s):  
Marie-Jeanne DAVICCO ◽  
J. LEFAIVRE ◽  
J.-P. BARLET ◽  
R. DABERT ◽  
Bernadette LASSALAS ◽  
...  

Peptides ◽  
1987 ◽  
Vol 8 (6) ◽  
pp. 973-976 ◽  
Author(s):  
Alphons J.L. de Jong ◽  
Manfred V. Singer ◽  
Cornelis B.H.W. Lamers

2005 ◽  
Vol 288 (5) ◽  
pp. G1066-G1073 ◽  
Author(s):  
Zhongling Zheng ◽  
Mark W. Lewis ◽  
R. Alberto Travagli

Using whole cell patch clamp in thin brain stem slices, we tested the effects of cholecystokinin (CCK) on identified gastric-projecting neurons of the rat dorsal motor nucleus of the vagus (DMV). Perfusion with the sulfated form of CCK octapeptide (CCK8s, 30 pM–300 nM, EC50 ∼4 nM) induced a concentration-dependent inward current in 35 and 41% of corpus- and antrum/pylorus-projecting DMV neurons, respectively. Conversely, none of the fundus-projecting DMV neurons responded to perfusion with CCK8s. The CCK8s-induced inward current was accompanied by a 65 ± 17% increase in membrane input resistance and reversed at 90 ± 4 mV, indicating that the excitatory effects of CCK8s were mediated by the closure of a potassium conductance. Pretreatment with the synaptic blocker TTX (0.3–1 μM) reduced the CCK8s-induced current, suggesting that a portion of the CCK8s-induced current was mediated indirectly via an action on presynaptic neurons apposing the DMV membrane. Pretreatment with the selective CCK-A receptor antagonist lorglumide (0.3–3 μM) attenuated the CCK8s-induced inward current in a concentration-dependent manner, with a maximum inhibition of 69 ± 12% obtained with 3 μM lorglumide. Conversely, pretreatment with the selective CCK-B antagonist triglumide did not attenuate the CCK8s-induced inward current; pretreatment with triglumide (3 μM) and lorglumide (1 μM) attenuated the CCK8s-induced current to the same extent as pretreatment with lorglumide alone. Immunohistochemical experiments showed that CCK-A receptors were localized on the membrane of 34, 65, and 60% of fundus-, corpus-, and antrum/pylorus-projecting DMV neurons, respectively. Our data indicate that CCK-A receptors are present on a subpopulation of gastric-projecting neurons and that their activation leads to excitation of the DMV membrane.


1988 ◽  
Vol 255 (5) ◽  
pp. G535-G541 ◽  
Author(s):  
K. Shiratori ◽  
K. Y. Lee ◽  
T. M. Chang ◽  
Y. H. Jo ◽  
D. H. Coy ◽  
...  

The effect of intravenous infusion of synthetic human pancreatic polypeptide (HPP) or a rabbit anti-PP serum on pancreatic exocrine secretion was studied in 10 dogs with gastric and Thomas duodenal cannulas. The infusion of HPP, at a dose of 1 microgram.kg-1.h-1, achieved a plasma PP concentration that mimicked the peak plasma concentration of PP in both interdigestive and postprandial states. This dose of HPP significantly inhibited pancreatic secretion in the interdigestive state. By contrast, immunoneutralization of circulating PP by a rabbit anti-PP serum resulted in significant increases (P less than 0.05) in both interdigestive and postprandial pancreatic secretion, including water, bicarbonate, and protein. The increase in the pancreatic secretion paralleled a decrease in circulating PP level, which lasted for as long as 5 days. Furthermore, the anti-PP serum blocked the inhibitory action of exogenous HPP on pancreatic exocrine secretion. The present study indicates that endogenous PP plays a significant role in the regulation of the pancreatic exocrine secretion in both interdigestive and digestive states. Thus we conclude that PP is another hormone regulating pancreatic exocrine secretion in dogs.


Sign in / Sign up

Export Citation Format

Share Document