metabotropic glutamate receptors
Recently Published Documents


TOTAL DOCUMENTS

2167
(FIVE YEARS 192)

H-INDEX

113
(FIVE YEARS 8)

2022 ◽  
Vol 23 (2) ◽  
pp. 840
Author(s):  
Li-Min Mao ◽  
Alaya Bodepudi ◽  
Xiang-Ping Chu ◽  
John Q. Wang

Group I metabotropic glutamate (mGlu) receptors (mGlu1/5 subtypes) are G protein-coupled receptors and are broadly expressed in the mammalian brain. These receptors play key roles in the modulation of normal glutamatergic transmission and synaptic plasticity, and abnormal mGlu1/5 signaling is linked to the pathogenesis and symptomatology of various mental and neurological disorders. Group I mGlu receptors are noticeably regulated via a mechanism involving dynamic protein–protein interactions. Several synaptic protein kinases were recently found to directly bind to the intracellular domains of mGlu1/5 receptors and phosphorylate the receptors at distinct amino acid residues. A variety of scaffolding and adaptor proteins also interact with mGlu1/5. Constitutive or activity-dependent interactions between mGlu1/5 and their interacting partners modulate trafficking, anchoring, and expression of the receptors. The mGlu1/5-associated proteins also finetune the efficacy of mGlu1/5 postreceptor signaling and mGlu1/5-mediated synaptic plasticity. This review analyzes the data from recent studies and provides an update on the biochemical and physiological properties of a set of proteins or molecules that interact with and thus regulate mGlu1/5 receptors.


2022 ◽  
Author(s):  
Yangyang Yu ◽  
Jiajia Li ◽  
Zhixuan Yuan ◽  
Yongchen Fan ◽  
Ying Wu

Abstract Epilepsy is the second largest neurological disease which seriously threatens human life and health. The one important reason of inducing epilepsy is ischemic stroke which causes insufficient oxygen supply from blood vessels to neurons. However, few studies focus on the underlying mechanism of the generation and propagation of epilepsy after ischemic stroke by utilizing modeling methods. To explore the mechanism, this paper establishes a coupled network model consisting of neurons and astrocytes, and introduces a blood vessel to simulate the condition of ischemic stroke. First we study the effect of the degree of vascular blockage on the generation of epilepsy. The results demonstrate that the important reason of epilepsy after ischemic stroke is the disruption of ion concentration gradient. Then we study three factors that influence the epileptic propagation after ischemic stroke: massive glutamate release, excessive receptor activation and high extracellular potassium concentration. The results demonstrate that massive glutamate acting on postsynaptic neurons and the excessive activation of glutamate receptors on postsynaptic neurons promote the epileptic propagation in neuronal population, and massive glutamate acting on astrocytes and excessive activation of metabotropic glutamate receptors on presynaptic neurons inhibit the epileptic propagation, and the potassium uptake by astrocytes suppresses the epileptic propagation. The results are consistent with the experimental phenomena. The simulation results also shed light on the fact that astrocytes have neuroprotective effect. Our results on the generation and propagation of epilepsy after ischemic stroke could offer theoretical guidelines for the treatment of epilepsy after ischemic stroke.


2022 ◽  
Author(s):  
K. Ulrich Bayer ◽  
Sarah G Cook ◽  
Nicole L Rumian

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates both long-term potentiation and depression (LTP and LTD) of excitatory synapses, two opposing forms of synaptic plasticity induced by strong versus weak stimulation of NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD is prevalent in juvenile hippocampus, but in mature hippocampus, LTD is still readily induced by stimulating metabotropic glutamate receptors (mGluRs). Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation that induces Ca2+-independent autonomous kinase activity. This autophosphorylation (i) accelerated CaMKII movement to excitatory synapses after LTP stimuli and (ii) was required for the movement to inhibitory synapses after NMDAR-LTD stimuli. Similar to NMDAR-LTD, the mGluR-LTD stimuli did not induce any CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Taken together, even though CaMKII T286 autophosphorylation has a longstanding prominent role in LTP, it is also required for both major forms of LTD in hippocampal neurons, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.


2022 ◽  
Vol 23 (1) ◽  
pp. 497
Author(s):  
Alexandra V. Dyomina ◽  
Anna A. Kovalenko ◽  
Maria V. Zakharova ◽  
Tatiana Yu. Postnikova ◽  
Alexandra V. Griflyuk ◽  
...  

Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium–pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium–pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.


2021 ◽  
Vol 20 ◽  
Author(s):  
Izabella B. Q. de Lima ◽  
Fabíola M. Ribeiro

: Alzheimer’s disease (AD) was first identified more than 100 years ago and, yet, aspects pertaining its origin as well as the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning as well as its role in pathological conditions remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. Glial mGluRs influence AD-related alterations in Ca2+ signalling, APP processing and Aβ burden, as well as AD-related neurodegeneration. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.


2021 ◽  
Vol 15 ◽  
Author(s):  
Camille Quilgars ◽  
Jean-René Cazalets ◽  
Sandrine S. Bertrand

The present study explores the impact of metabotropic glutamate receptor (mGluR) activation on activity-dependent synaptic plasticity (ADSP) and the intrinsic membrane properties of lumbar motoneurons (MNs) using a combination of biochemical, pharmacological, electrophysiological and behavioral techniques. Using spinal cord slices from C57BL/6JRJ mice at two developmental stages, 1-3 and 8-12 postnatal days (P1-P3; P8-P12, respectively), we found that ADSP expressed at glutamatergic synapses between axons conveyed in the ventrolateral funiculus (VLF) and MNs, involved mGluR activation. Using specific agonists of the three groups of mGluRs, we observed that mGluR stimulation causes subtype-specific and developmentally regulated modulation of the ADSP and synaptic transmission at VLF-MN synapses as well as the intrinsic membrane properties of MNs. RT-qPCR analysis revealed a downregulation of mGluR gene expression with age in the ventral part of the lumbar spinal cord. Interestingly, the selective harvest by laser microdissection of MNs innervating the Gastrocnemius and Tibialis anterior muscles unraveled that the level of Grm2 expression is higher in Tibialis MNs compared to Gastrocnemius MNs suggesting a specific mGluR gene expression profile in these two MN pools. Finally, we assessed the functional impact of mGluR modulation on electrically induced bouts of fictive locomotion in the isolated spinal cord preparation of P1-P3 mice, and in vivo during spontaneous episodes of swimming activity in both P1-P3 and P8-P12 mouse pups. We observed that the mGluR agonists induced distinct and specific effects on the motor burst amplitudes and period of the locomotor rhythms tested and that their actions are function of the developmental stage of the animals. Altogether our data show that the metabotropic glutamatergic system exerts a complex neuromodulation in the developing spinal lumbar motor networks and provide new insights into the expression and modulation of ADSP in MNs.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nicola B. Mercuri ◽  
Mauro Federici ◽  
Francesca Romana Rizzo ◽  
Lorenzo Maugeri ◽  
Sebastian L. D’Addario ◽  
...  

The cellular mechanisms regulating dopamine (DA) release in the striatum have attracted much interest in recent years. By in vitro amperometric recordings in mouse striatal slices, we show that a brief (5 min) exposure to the metabotropic glutamate receptor agonist DHPG (50 μM) induces a profound depression of synaptic DA release, lasting over 1 h from DHPG washout. This long-term depression is sensitive to glycine, which preferentially inhibits local cholinergic interneurons, as well as to drugs acting on nicotinic acetylcholine receptors and to the pharmacological depletion of released acetylcholine. The same DHPG treatment induces a parallel long-lasting enhancement in the tonic firing of presumed striatal cholinergic interneurons, measured with multi-electrode array recordings. When DHPG is bilaterally infused in vivo in the mouse striatum, treated mice display an anxiety-like behavior. Our results demonstrate that metabotropic glutamate receptors stimulation gives rise to a prolonged depression of the striatal dopaminergic transmission, through a sustained enhancement of released acetylcholine, due to the parallel long-lasting potentiation of striatal cholinergic interneurons firing. This plastic interplay between dopamine, acetylcholine, and glutamate in the dorsal striatum may be involved in anxiety-like behavior typical of several neuropsychiatric disorders.


2021 ◽  
Vol 13 ◽  
Author(s):  
Chao Gu ◽  
Yajing Chen ◽  
Yan Chen ◽  
Chun-Feng Liu ◽  
Zengyan Zhu ◽  
...  

Parkinson’s disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.


Sign in / Sign up

Export Citation Format

Share Document