Calcitonin gene-related peptide in viscerosensitive response to colorectal distension in rats

1997 ◽  
Vol 273 (1) ◽  
pp. G191-G196 ◽  
Author(s):  
V. Plourde ◽  
S. St-Pierre ◽  
R. Quirion

The role of calcitonin gene-related peptide (CGRP) on colorectal distension-induced visceral pain was investigated in conscious rats. Intracolonic administration of acetic acid (0.6%) resulted in a significantly increased number of abdominal contractions in response to colorectal balloon distension from 5.8 +/- 1.2 in controls to 16.6 +/- 1.0 in acetic acid-treated animals (P < 0.05), evidencing sensitization of visceral afferent pathways and subsequently visceral hyperalgesia. This sensitization phenomenon was not observed in animals previously treated with systemic capsaicin. Likewise, in animals not treated with capsaicin, use of an intravenous antagonist for CGRP [human CGRP-(8-37)], completely reversed the sensitizing effects of acetic acid. Furthermore, intravenous administration of CGRP dose dependently increased the number of abdominal contractions in response to colorectal distension from 3.0 +/- 1.1 (CGRP 250 ng) to 17.0 +/- 1.2 (CGRP 500 ng, P < 0.05), as previously observed in acetic acid-treated animals. Finally, intrathecal administration of hCGRP-(8–37) (mid-lumbar) also resulted in a total dose-dependent reversal of CGRP (500 ng) or acetic acid-induced visceral hypersensitivity. These results demonstrate that CGRP plays a major role in this model of visceral afferent nerve sensitization from gastrointestinal origin.

2001 ◽  
Vol 13 (3) ◽  
pp. 229-236 ◽  
Author(s):  
J. M. Gschossmann ◽  
S. V. Coutinho ◽  
J. C. Miller ◽  
K. Huebel ◽  
B. Naliboff ◽  
...  

1998 ◽  
Vol 114 ◽  
pp. A757 ◽  
Author(s):  
JM Gschossmann ◽  
JC Miller ◽  
V Plourde ◽  
HC Wong ◽  
JH Walsh ◽  
...  

1988 ◽  
Vol 92 (3) ◽  
pp. 325-329 ◽  
Author(s):  
Yasushi Kuraishi ◽  
Toyomichi Nanayama ◽  
Hiroshi Ohno ◽  
Masabumi Minami ◽  
Masamich Satoh

2018 ◽  
Vol 314 (2) ◽  
pp. G188-G200 ◽  
Author(s):  
Nick J. Spencer ◽  
Elín I. Magnúsdóttir ◽  
Jon E. T. Jakobsson ◽  
Garreth Kestell ◽  
Bao Nan Chen ◽  
...  

The role of calcitonin gene-related peptide (CGRP) in visceral and somatic nociception is incompletely understood. CGRPα is highly expressed in sensory neurons of dorsal root ganglia and particularly in neurons that also express the transient receptor potential cation channel subfamily V member 1 (Trpv1). Therefore, we investigated changes in visceral and somatic nociception following deletion of CGRPα from the Trpv1-Cre population using the Cre/lox system. In control mice, acetic acid injection (0.6%, ip) caused significant immobility (time stationary), an established indicator of visceral pain. In CGRPα-mCherrylx/lx;Trpv1-Cre mice, the duration of immobility was significantly less than controls, and the distance CGRPα-mCherrylx/lx;Trpv1-Cre mice traveled over 20 min following acetic acid was significantly greater than controls. However, following acetic acid injection, there was no difference between genotypes in the writhing reflex, number of abdominal licks, or forepaw wipes of the cheek. CGRPα-mCherrylx/lx;Trpv1-Cre mice developed more pronounced inflammation-induced heat hypersensitivity above baseline values compared with controls. However, analyses of noxious acute heat or cold transmission revealed no difference between genotypes. Also, odor avoidance test, odor preference test, and buried food test for olfaction revealed no differences between genotypes. Our findings suggest that CGRPα-mediated transmission within the Trpv1-Cre population plays a significant role in visceral nociceptive pathways underlying voluntary movement. Monitoring changes in movement over time is a sensitive parameter to identify differences in visceral nociception, compared with writhing reflexes, abdominal licks, or forepaw wipes of the cheek that were unaffected by deletion of CGRPα- from Trpv1-Cre population and likely utilize different mechanisms. NEW & NOTEWORTHY The neuropeptide calcitonin gene-related peptide (CGRP) is highly colocalized with transient receptor potential cation channel subfamily V member 1 (TRPV1)-expressing primary afferent neurons, but the functional role of CGRPα specifically in these neurons is unknown in pain processing from visceral and somatic afferents. We used cre-lox recombination to conditionally delete CGRPα from TRPV1-expressing neurons in mice. We show that CGRPα from within TRPV1-cre population plays an important role in visceral nociception but less so in somatic nociception.


Sign in / Sign up

Export Citation Format

Share Document