scholarly journals Gene transfer of recombinant endothelial nitric oxide synthase to liver in vivo and in vitro

2000 ◽  
Vol 279 (5) ◽  
pp. G1023-G1030 ◽  
Author(s):  
Vijay Shah ◽  
Alex F. Chen ◽  
Sheng Cao ◽  
Helen Hendrickson ◽  
Deb Weiler ◽  
...  

Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) contributes to hepatic vascular homeostasis. The aim of this study was to examine whether delivery of an adenoviral vector encoding eNOS gene to liver affects vasomotor function in vivo and the mechanism of NO production in vitro. Rats were administered adenoviruses encoding β-galactosidase (AdCMVLacZ) or eNOS (AdCMVeNOS) via tail vein injection and studied 1 wk later. In animals transduced with AdCMVLacZ, β-galactosidase activity was increased in the liver, most prominently in hepatocytes. In AdCMVeNOS-transduced animals, eNOS protein levels and catalytic activity were significantly increased. Overexpression of eNOS diminished baseline perfusion pressure and constriction in response to the α1-agonist methoxamine in the perfused liver. Transduction of cultured hepatocytes with AdCMVeNOS resulted in the targeting of recombinant eNOS to a perinuclear distribution and binding with the NOS-activating protein heat shock protein 90. These events were associated with increased ionomycin-stimulated NO release. In summary, this is the first study to demonstrate successful delivery of the recombinant eNOS gene to liver in vivo and in vitro with ensuing NO production.

2005 ◽  
Vol 386 (3) ◽  
pp. 567-574 ◽  
Author(s):  
Chunying LI ◽  
Wei HUANG ◽  
M. Brennan HARRIS ◽  
Jonathan M. GOOLSBY ◽  
Richard C. VENEMA

eNOS (endothelial nitric oxide synthase) catalyses the conversion of L-arginine into L-citrulline and NO. Evidence has been presented previously that eNOS is associated with the CAT (cationic amino acid transporter)-1 arginine transporter in endothelial caveolae, and it has been proposed that eNOS–CAT-1 association facilitates the delivery of extracellular L-arginine to eNOS. Definitive proof of a protein–protein interaction between eNOS and CAT-1 is lacking, however, and it is also unknown whether the two proteins interact directly or via an adaptor protein. In the present study, we raised a polyclonal antibody against CAT-1, and show using reciprocal co-immunoprecipitation protocols that eNOS and CAT-1 do indeed form a complex in BAECs (bovine aortic endothelial cells). In vitro binding assays with GST (glutathione S-transferase)–CAT-1 fusion proteins and eNOS show that the two proteins interact directly and that no single CAT-1 intracellular domain is sufficient to mediate the interaction. Overexpression of CAT-1 in BAECs by adenoviral-mediated gene transfer results in significant increases in both L-arginine uptake and NO production by the cells. However, whereas increased L-arginine transport is reversed completely by the CAT-1 inhibitor, L-lysine, increased NO release is unaltered, suggesting that NO production in this in vitro model is independent of CAT-1-mediated transport. Furthermore, eNOS enzymic activity is increased in lysates of CAT-1-overexpressing cells accompanied by increased phosphorylation of eNOS at Ser-1179 and Ser-635, and decreased association of eNOS with caveolin-1. Taken together, these data suggest that direct interaction of eNOS with CAT-1 enhances NO release by a mechanism not involving arginine transport.


2017 ◽  
Vol 312 (4) ◽  
pp. H854-H866 ◽  
Author(s):  
Jaimit Parikh ◽  
Adam Kapela ◽  
Nikolaos M. Tsoukias

We used mathematical modeling to investigate nitric oxide (NO)-dependent vasodilatory signaling in the arteriolar wall. Detailed continuum cellular models of calcium (Ca2+) dynamics and membrane electrophysiology in smooth muscle and endothelial cells (EC) were coupled with models of NO signaling and biotransport in an arteriole. We used this theoretical approach to examine the role of endothelial hemoglobin-α (Hbα) as a modulator of NO-mediated myoendothelial feedback, as previously suggested in Straub et al. ( Nature 491: 473–477, 2012). The model considers enriched expression of inositol 1,4,5-triphosphate receptors (IP3Rs), endothelial nitric oxide synthase (eNOS) enzyme, Ca2+-activated potassium (KCa) channels and Hbα in myoendothelial projections (MPs) between the two cell layers. The model suggests that NO-mediated myoendothelial feedback is plausible if a significant percentage of eNOS is localized within or near the myoendothelial projection. Model results show that the ability of Hbα to regulate the myoendothelial feedback is conditional to its colocalization with eNOS near MPs at concentrations in the high nanomolar range (>0.2 μM or 24,000 molecules). Simulations also show that the effect of Hbα observed in in vitro experimental studies may overestimate its contribution in vivo, in the presence of blood perfusion. Thus, additional experimentation is required to quantify the presence and spatial distribution of Hbα in the EC, as well as to test that the strong effect of Hbα on NO signaling seen in vitro, translates also into a physiologically relevant response in vivo. NEW & NOTEWORTHY Mathematical modeling shows that although regulation of nitric oxide signaling by hemoglobin-α (Hbα) is plausible, it is conditional to its presence in significant concentrations colocalized with endothelial nitric oxide synthase in myoendothelial projections. Additional experimentation is required to test that the strong effect of Hbα seen in vitro translates into a physiologically relevant response in vivo


2000 ◽  
Vol 278 (4) ◽  
pp. H1352-H1361 ◽  
Author(s):  
Anouk-Martine Teichert ◽  
Tricia L. Miller ◽  
Sharon C. Tai ◽  
Yang Wang ◽  
Xie Bei ◽  
...  

Endothelium-derived nitric oxide (NO) is primarily attributable to constitutive expression of the endothelial nitric oxide synthase (eNOS) gene. Although a more comprehensive understanding of transcriptional regulation of eNOS is emerging with respect to in vitro regulatory pathways, their relevance in vivo warrants assessment. In this regard, promoter-reporter insertional transgenic murine lines were created containing 5,200 bp of the native murine eNOS promoter directing transcription of nuclear-localized β-galactosidase. Examination of β-galactosidase expression in heart, lung, kidney, liver, spleen, and brain of adult mice demonstrated robust signal in large and medium-sized blood vessels. Small arterioles, capillaries, and venules of the microvasculature were notably negative, with the exception of the vasa recta of the medullary circulation of the kidney, which was strongly positive. Only in the brain was the reporter expressed in non-endothelial cell types, such as the CA1 region of the hippocampus. Epithelial cells of the bronchi, bronchioles, and alveoli were scored as negative, as was renal tubular epithelium. Cardiac myocytes, skeletal muscle, and smooth muscle of both vascular and nonvascular sources failed to demonstrate β-galactosidase staining. Expression was uniform across multiple founders and was not significantly affected by genomic integration site. These transgenic eNOS promoter-reporter lines will be a valuable resource for ongoing studies addressing the regulated expression of eNOS in vivo in both health and disease.


2006 ◽  
Vol 174 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Carlos Fernández-Hernando ◽  
Masaki Fukata ◽  
Pascal N. Bernatchez ◽  
Yuko Fukata ◽  
Michelle I. Lin ◽  
...  

Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function.


2014 ◽  
Vol 306 (9) ◽  
pp. H1302-H1313 ◽  
Author(s):  
Ramzi N. El Accaoui ◽  
Sarah T. Gould ◽  
Georges P. Hajj ◽  
Yi Chu ◽  
Melissa K. Davis ◽  
...  

Risk factors for fibrocalcific aortic valve disease (FCAVD) are associated with systemic decreases in bioavailability of endothelium-derived nitric oxide (EDNO). In patients with bicuspid aortic valve (BAV), vascular expression of endothelial nitric oxide synthase (eNOS) is decreased, and eNOS−/− mice have increased prevalence of BAV. The goal of this study was to test the hypotheses that EDNO attenuates profibrotic actions of valve interstitial cells (VICs) in vitro and that EDNO deficiency accelerates development of FCAVD in vivo. As a result of the study, coculture of VICs with aortic valve endothelial cells (vlvECs) significantly decreased VIC activation, a critical early phase of FCAVD. Inhibition of VIC activation by vlvECs was attenuated by NG-nitro-l-arginine methyl ester or indomethacin. Coculture with vlvECs attenuated VIC expression of matrix metalloproteinase-9, which depended on stiffness of the culture matrix. Coculture with vlvECs preferentially inhibited collagen-3, compared with collagen-1, gene expression. BAV occurred in 30% of eNOS−/− mice. At age 6 mo, collagen was increased in both bicuspid and trileaflet eNOS−/− aortic valves, compared with wild-type valves. At 18 mo, total collagen was similar in eNOS−/− and wild-type mice, but collagen-3 was preferentially increased in eNOS−/− mice. Calcification and apoptosis were significantly increased in BAV of eNOS−/− mice at ages 6 and 18 mo. Remarkably, these histological changes were not accompanied by physiologically significant valve stenosis or regurgitation. In conclusion, coculture with vlvECs inhibits specific profibrotic VIC processes. In vivo, eNOS deficiency produces fibrosis in both trileaflet and BAVs but produces calcification only in BAVs.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Na Li ◽  
Fuli Xiang ◽  
Xiangru Lu ◽  
Morris Karmazyn ◽  
Qingping Feng

Background: Bone marrow mesenchymal stem cells (MSCs) migrate from bone marrow towards the heart and contribute to cardiac repair post myocardial infarction. However, mechanisms by which MSCs migrate to the ischemic heart remain unclear. The present study investigated the role of endothelial nitric oxide synthase (eNOS) on MSC migration towards the ischemic myocardium and whether stromal cell derived factor-1 (SDF-1) contributes to the eNOS-mediated MSC migration. Methods and Results: MSCs were isolated from wild-type (WT) bone marrow and cultured in vitro for 3 generations. Coronary microvascular endothelial cells were isolated from adult mouse hearts and seeded on inserts for transendothelial migration assay. Neonatal cardiomyocytes were isolated from WT, eNOS −/− and eNOS transgenic (Tg) mice, cultured to subconfluence and subjected to 30 min of anoxia followed by 6 hours of reoxygenation (A/R). The conditioned medium was collected and served as a chemoattractant. MSC migration was significantly decreased in eNOS −/− compared to WT conditioned medium (9.8± 1.8% vs. 14.7±2.3%), but increased in eNOS-Tg conditioned medium (38.0±4.5%, P <0.05). SDF-1 protein secretion was significantly decreased in eNOS −/− but increased in eNOS-Tg conditioned medium. To examine MSC migration in vivo, WT, eNOS −/− or eNOS-Tg mice were subjected to myocardial ischemia for 45 min followed by 24 hrs of reperfusion (I/R). Immediately after reperfusion, GFP + MSCs were administered via a tail vein. GFP + cells in the ischemic region were significantly decreased in eNOS −/− compared to WT hearts (3.4±0.3 vs. 5.6±0.4 cell per mm 2 , P<0.05) but significantly increased in eNOS-Tg compared to WT (10.2±1.6 vs. 5.6±0.4 cell per mm 2 , P<0.05). Furthermore, SDF-1 mRNA and protein expression was increased in eNOS-Tg as compared to WT and eNOS −/− after myocardial I/R. Conclusions: eNOS promotes MSC migration towards the ischemic myocardium. This is likely due to an upregulation of SDF-1.


Sign in / Sign up

Export Citation Format

Share Document