Intron 4 polymorphism of the endothelial nitric oxide synthase (eNOS) gene is associated with decreased NO production in a mercury-exposed population

2012 ◽  
Vol 414 ◽  
pp. 708-712 ◽  
Author(s):  
Katia Cristina de Marco ◽  
Lusania Maria Greggi Antunes ◽  
Jose Eduardo Tanus-Santos ◽  
Fernando Barbosa
2007 ◽  
Vol 28 (2) ◽  
pp. 77-81 ◽  
Author(s):  
Satagopan Uthra ◽  
Rajiv Raman ◽  
Bickol N. Mukesh ◽  
Padmaja Kumari R ◽  
Pradeep G. Paul ◽  
...  

2000 ◽  
Vol 279 (5) ◽  
pp. G1023-G1030 ◽  
Author(s):  
Vijay Shah ◽  
Alex F. Chen ◽  
Sheng Cao ◽  
Helen Hendrickson ◽  
Deb Weiler ◽  
...  

Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) contributes to hepatic vascular homeostasis. The aim of this study was to examine whether delivery of an adenoviral vector encoding eNOS gene to liver affects vasomotor function in vivo and the mechanism of NO production in vitro. Rats were administered adenoviruses encoding β-galactosidase (AdCMVLacZ) or eNOS (AdCMVeNOS) via tail vein injection and studied 1 wk later. In animals transduced with AdCMVLacZ, β-galactosidase activity was increased in the liver, most prominently in hepatocytes. In AdCMVeNOS-transduced animals, eNOS protein levels and catalytic activity were significantly increased. Overexpression of eNOS diminished baseline perfusion pressure and constriction in response to the α1-agonist methoxamine in the perfused liver. Transduction of cultured hepatocytes with AdCMVeNOS resulted in the targeting of recombinant eNOS to a perinuclear distribution and binding with the NOS-activating protein heat shock protein 90. These events were associated with increased ionomycin-stimulated NO release. In summary, this is the first study to demonstrate successful delivery of the recombinant eNOS gene to liver in vivo and in vitro with ensuing NO production.


Author(s):  
Sarah Abdullah ◽  
Yazun Jarrar ◽  
Hussam Alhawari ◽  
Eyada Abed ◽  
Malek Zihlif

Background: Endothelial nitric oxide synthase (eNOS) plays a major role in the response of antihypercholesterol statin drugs. Genetic polymorphisms in the eNOS gene affect the activity of eNOS and thereby modulate statin response. Objectives: This study investigated the influence of major functional eNOS gene polymorphisms (rs2070744, rs1799983, and rs61722009) on the lipid profile of type 2 diabetes mellitus (T2DM) Jordanian patients treated with atorvastatin. Methods: The sample comprised 103 T2DM patients who attended the diabetes clinic of Jordan University Hospital. The T2DM patients had regularly been taking 20 mg atorvastatin. The atorvastatin response was calculated by measuring the lipid profile before and after three months of atorvastatin treatment. The eNOS genotypes of the subjects were analyzed using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) assay. Results: No significant association was found between eNOS genetic polymorphisms and the response to atorvastatin (ANOVA, p > 0.05). In addition, no significant difference in the frequency of eNOS genotypes was found between T2DM patients and healthy subjects. However, patients with eNOS rs1799983, 4a/4a, and rs61722009 G/G genotypes showed a significantly lower levels of baseline total cholesterol (TC) and low density lipoprotein (LDL) than did patients carrying the rs1799983 4b/4b or rs61722009 T/T genotype (p < 0.05). The eNOS rs1799983 and rs61722009 polymorphisms were in complete linkage disequilibrium (D' = 1). Conclusion: Although no association was found between eNOS genetic polymorphisms and atorvastatin response, there was a significant association between the rs1799983 and rs61722009 genotypes and baselines levels of TC and LDL in Jordanian T2DM patients. These genetic variants affect cholesterol levels and may play a role in the susceptibility to cardiovascular diseases in T2DM patients. Further studies are needed to validate these findings.


2021 ◽  
pp. 026835552110166
Author(s):  
Guangbin Huang ◽  
Xuejun Deng ◽  
Yanan Xu ◽  
Pan Wang ◽  
Tao Li ◽  
...  

Background Endothelial nitric oxide synthase (eNOS) polymorphism may influence the risk of venous thromboembolism (VTE). However, data from published studies with low statistical power are inconclusive. The present meta-analysis aimed to assess the relationship between eNOS polymorphism and the risk of VTE. Method Case-control studies evaluating the association between the eNOS polymorphism and VTE were searched in PubMed, Embase, Web of Science, Google Scholar, Wanfang, Chinese National Knowledge Infrastructure (CNKI), the Chongqing VIP Chinese Science and Technology Periodical Database (VIP), and Chinese Biomedical Literature Database (CBM). Results A total of 1588 cases and 2405 controls from 9 studies were included in the analysis. The results showed that eNOS G894T polymorphism was related to VTE susceptibility and the difference was statistically significant [T vs G: OR = 1.41, 95% CI (1.13, 1.75), P = 0.002; TT + GG vs TG: OR = 0.71, 95% CI (0.60, 0.84), P = 0.000; TT + TG vs GG: OR = 1.45, 95% CI (1.23, 1.70), P = 0.000]. Additionally, eNOS Intron 4 VNTR polymorphism was related to VTE susceptibility and the difference was statistically significant [4b4b vs 4a4a + 4a4b: OR = 2.77, 95% CI (1.01, 7.61), P = 0.048]. Conclusion ENOS G894T and eNOS Intron 4 VNTR polymorphisms were associated with VTE susceptibility, especially in Asian populations. However, multicenter studies with larger samples should be conducted to further clarify this association and verify our findings.


2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Circulation ◽  
1999 ◽  
Vol 100 (suppl_2) ◽  
Author(s):  
David G. Cable ◽  
Vincent J. Pompili ◽  
Timothy O’Brien ◽  
Hartzell V. Schaff

Background —Coronary arteries respond to hypoxia with transient relaxations, which increases coronary blood flow, in part, by release of nitric oxide. We hypothesized that increased expression of nitric oxide synthase might further augment blood vessel relaxation during hypoxia. The present study examined the effect of adenovirus-mediated transfer of bovine endothelial nitric oxide synthase (eNOS) on hypoxia-induced transient relaxations in canine coronary arteries. Methods and Results —Paired segments of coronary arteries were exposed to vehicle (phosphate-buffered saline with albumin) or an adenovirus encoding either E coli β-galactosidase (Ad.CMVLacZ, viral control; 10 10 pfu/mL) or eNOS (Ad.CMVeNOS; 10 10 pfu/mL) for 2 hours at 37°C. Immunohistochemistry with a monoclonal antibody specific for eNOS documented both endothelial and adventitial expression in Ad.CMVeNOS arteries, whereas vehicle and viral controls demonstrated only constitutive expression. Levels of cGMP were increased 5-fold in Ad.CMVeNOS arteries compared with controls. In arteries exposed to Ad.CMVeNOS, maximum contraction to prostaglandin F 2α was reduced compared with viral controls, and this effect was eliminated by pretreatment with a competitive inhibitor of eNOS ( N G -monomethyl- l -arginine, 10 −3 mol/L). Hypoxia-induced transient relaxation (95% N 2 -5% CO 2 ) in Ad.CMVeNOS arteries (45.2±8.8%, n=6) was augmented compared with vehicle (26.3±6.0%) or viral (27.2±7.1%) controls. Conclusions —Adenovirus-mediated gene transfer of nitric oxide synthase reduces receptor-dependent contractions and augments hypoxia-induced relaxations in canine coronary arteries; this method of augmentation of NO production might be advantageous for reduction of coronary artery vasospasm.


2019 ◽  
Vol 67 (11) ◽  
pp. 845-855
Author(s):  
Ulf R. Heinrich ◽  
Irene Schmidtmann ◽  
Regina Meuser ◽  
Benjamin P. Ernst ◽  
Desiree Wünsch ◽  
...  

Constitutively expressed endothelial nitric oxide synthase (eNOS) is supposed to play a role in noise-induced nitric oxide (NO)-production. It is commonly known that intense noise exposure results in inducible NOS (iNOS) expression and increased NO-production, but knowledge about a contribution of the eNOS isoform is still lacking. Effects of noise exposure on eNOS immunolabeling were determined in male guinea pigs ( n=24). For light microscopic analysis, 11 animals were exposed to 90 dB for 1 hr and 6 animals were used as controls. After exposure, eNOS immunostaining was performed on paraffin sections, and the staining intensities were quantified for 4 cochlear regions. For electron microscopic analysis, 2 animals were exposed for 2 hr to 90 dB and 5 animals were used as controls. The intensity of eNOS immunolabeling was found to be already comprehensively increased 1 hr after noise exposure to 90 dB. At the ultrastructural level, a clear increase in eNOS immunolabeling was found in microtubules-rich areas of cochlear cuticular structures. Hence, our findings indicate that the reticular lamina forming the endolymph–perilymph barrier at the apical side of the organ of Corti is involved in a fast intrinsic otoprotective mechanism of the cochlea.


Sign in / Sign up

Export Citation Format

Share Document