Mucosal acid challenge activates nitrergic neurons in myenteric plexus of rat stomach

2001 ◽  
Vol 281 (5) ◽  
pp. G1316-G1321 ◽  
Author(s):  
Rudolf Schicho ◽  
Michael Schemann ◽  
Peter Holzer ◽  
Irmgard T. Lippe

We tested the hypothesis that intrinsic neurons of the rat gastric myenteric plexus can be activated by an acid (HCl) challenge of the mucosa. Activated neurons were visualized by immunohistochemical detection of c-Fos, a marker for neuronal excitation. The neurochemical identity of the neurons activated by the HCl challenge was determined by colocalizing c-Fos with a marker for excitatory pathways, choline acetyltransferase (ChAT), and a marker for inhibitory pathways, nitric oxide synthase (NOS). Two hours after intragastric administration of HCl or saline, stomachs were removed and immunofluorescence triple labeling of myenteric neurons was carried out on whole mount preparations. Treatment with 0.35, 0.5, and 0.7 M HCl induced c-Fos in 8%, 56%, and 64%, respectively, of NOS-positive but not ChAT-positive neurons. c-Fos was also seen in glial cells of HCl-treated rats, whereas in saline-treated animals c-Fos was absent from the myenteric plexus. HCl treatment did not change the proportion of ChAT- and NOS-immunoreactive neurons in the myenteric ganglia. It is concluded that gastric acid challenge concentration-dependently stimulates a subpopulation of nitrergic, but not cholinergic, myenteric plexus neurons, which may play a role in muscle relaxation, vasodilatation, and/or secretion.

2017 ◽  
Vol 312 (4) ◽  
pp. G374-G389 ◽  
Author(s):  
Viviana Filpa ◽  
Elisa Carpanese ◽  
Silvia Marchet ◽  
Cristina Pirrone ◽  
Andrea Conti ◽  
...  

Neuronal and inducible nitric oxide synthase (nNOS and iNOS) play a protective and damaging role, respectively, on the intestinal neuromuscular function after ischemia-reperfusion (I/R) injury. To uncover the molecular pathways underlying this dichotomy we investigated their possible correlation with the orthodenticle homeobox proteins OTX1 and OTX2 in the rat small intestine myenteric plexus after in vivo I/R. Homeobox genes are fundamental for the regulation of the gut wall homeostasis both during development and in pathological conditions (inflammation, cancer). I/R injury was induced by temporary clamping the superior mesenteric artery under anesthesia, followed by 24 and 48 h of reperfusion. At 48 h after I/R intestinal transit decreased and was further reduced by Nω-propyl-l-arginine hydrochloride (NPLA), a nNOS-selective inhibitor. By contrast this parameter was restored to control values by 1400W, an iNOS-selective inhibitor. In longitudinal muscle myenteric plexus (LMMP) preparations, iNOS, OTX1, and OTX2 mRNA and protein levels increased at 24 and 48 h after I/R. At both time periods, the number of iNOS- and OTX-immunopositive myenteric neurons increased. nNOS mRNA, protein levels, and neurons were unchanged. In LMMPs, OTX1 and OTX2 mRNA and protein upregulation was reduced by 1400W and NPLA, respectively. In myenteric ganglia, OTX1 and OTX2 staining was superimposed with that of iNOS and nNOS, respectively. Thus in myenteric ganglia iNOS- and nNOS-derived NO may promote OTX1 and OTX2 upregulation, respectively. We hypothesize that the neurodamaging and neuroprotective roles of iNOS and nNOS during I/R injury in the gut may involve corresponding activation of molecular pathways downstream of OTX1 and OTX2. NEW & NOTEWORTHY Intestinal ischemia-reperfusion (I/R) injury induces relevant alterations in myenteric neurons leading to dismotility. Nitrergic neurons seem to be selectively involved. In the present study the inference that both neuronal and inducible nitric oxide synthase (nNOS and iNOS) expressing myenteric neurons may undergo important changes sustaining derangements of motor function is reinforced. In addition, we provide data to suggest that NO produced by iNOS and nNOS regulates the expression of the vital transcription factors orthodenticle homeobox protein 1 and 2 during an I/R damage.


2020 ◽  
Vol 40 (6) ◽  
pp. 493-500
Author(s):  
Grazielli F. Serenini ◽  
José Matheus Beltrami ◽  
Edson Gerônimo ◽  
Paula M. Favetta ◽  
Nathalia G.E. Legnani ◽  
...  

ABSTRACT: There are no studies that characterize the enteric nervous system (ENS) bats. The organization and density of myenteric neurons may vary according to the animal species, as well as the segment of the digestive tube considered. The nitric oxide is one of the key neurotransmitters present in the myenteric neurons, acting as a mediator in the smooth muscle relaxation. These neurons are evidenced by immunohistochemistry of nitric oxide synthase (NOS) or by NADPH-diaphorase histochemistry. In this sense, this study aimed to characterize the total neuronal population and subpopulation NADPH-d+ of the myenteric plexus present in the jejunum of the insectivore species Molossus rufus quantitatively. Five specimens were collected of M. rufus in a buffer area of the “Reserva Biológica das Perobas” in the microregion of Cianorte/PR. After the euthanasia, in a chamber saturated with isoflurane, segments were collected from the small intestine corresponding to the jejunum intended for two techniques for neuronal marking, Giemsa and NADPH-diaphorase, and a fragment to the histological technique of hematoxylin-eosin and Masson’s trichrome. All the procedures were approved by the “Comitê de Ética no Uso de Animais Unipar” (CEUA - protocol No. 34347/2017) and the “Instituto Chico Mendes de Conservação da Biodiversidade” (ICMBio - protocol No. 60061-1) The histological sections allowed to highlight the location of the myenteric plexus between the longitudinal and circular layers of the muscular tunic. The myenteric plexus had an average of total neuronal population (neurons Giemsa+) of 279.23 neurons/mm2, being the nitrergic neurons (neurons NADPH-d+) represented 20.4% of this total population, with an average of 58.14 neuron/mm2. Therefore, the collected data are consistent with previous studies in other mammalian species concerning the location of the myenteric plexus, as well as the neural myenteric proportion NADPH-d+ compared with the population of neurons Giemsa+. The gaps in the knowledge of ENS of bats limits comparative intraspecific and interspecific studies.


2003 ◽  
Vol 965 (1-2) ◽  
pp. 121-129 ◽  
Author(s):  
Kazushi Nishizaki ◽  
Koji Nakao ◽  
Hiromitsu Ishii ◽  
Hiroki Yamanaka ◽  
Atsushi Tokunaga ◽  
...  

1993 ◽  
Vol 264 (1) ◽  
pp. H238-H243 ◽  
Author(s):  
W. F. Jackson ◽  
A. Konig ◽  
T. Dambacher ◽  
R. Busse

We tested the hypothesis that prostacyclin and its stable analogue iloprost act as agonists of ATP-sensitive potassium channels (KATP) to induce vasodilation of the coronary circulation. The selective blocker of KATP, glibenclamide, was used as a probe for vasodilation mediated by KATP in saline-perfused rabbit hearts (constant flow, Langendorff preparation). Glibenclamide (10-300 nM) significantly increased coronary perfusion pressure and inhibited vasodilation induced by iloprost (1-30 nM), prostacyclin (10 nM), adenosine (0.3 microM), and cromakalim (0.1 microM), a known agonist of KATP. This potassium channel antagonist also inhibited vasodilation of rabbit hearts in response to 10 nM bradykinin in the presence of an inhibitor of nitric oxide synthase (30 microM NG-nitro-L-arginine). Because bradykinin-induced vasodilation is mediated by prostacyclin released from endothelial cells when nitric oxide synthesis is inhibited, these data indicate that glibenclamide is also effective against endogenous prostacyclin. The inhibitory effects of glibenclamide were selective: vasodilation induced by sodium nitroprusside (1-10 microM) or acetylcholine (1 microM) were not inhibited by this potassium channel antagonist. In addition, basal and bradykinin-stimulated release of 6-ketoprostaglandin F1 alpha was not affected by this antagonist of KATP. Glibenclamide also did not inhibit the activation of adenylate cyclase, as indicated by its lack of effect on adenosine 3',5'-cyclic monophosphate accumulation induced by iloprost (10 nM-1 microM) in bovine coronary arterial segments, a tissue in which iloprost-induced vascular smooth muscle relaxation is inhibited by glibenclamide.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document