intrinsic neurons
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 4)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Oriane Turrel ◽  
Niraja Ramesh ◽  
Marc J.F. Escher ◽  
Stephan J Sigrist

Establishing a detailed understanding of how the distinct forms of synaptic plasticity spatio-temporally engage into the initial storage and subsequent consolidation of memories remains a fundamental challenge of neuroscience. In addition to the better understood postsynaptic plasticity, different forms of presynaptic plasticity are widely expressed in mammalian brains and apparently operate along Hebbian or homeostatic rules. Their behavioral relevance remains enigmatic, however. Lately, acute upregulation of active zone (AZ) scaffold protein BRP and release factor Unc13A via specific axonal transport factors were shown to mediate stable expression of presynaptic homeostatic plasticity (PHP) at Drosophila neuromuscular junctions (NMJs). We here demonstrate that AZ scaling processes are specifically needed for stable expression of both, NMJ PHP as well as aversive olfactory mid-term memory within intrinsic neurons of the Drosophila mushroom body (MB). We first demonstrate that AZ upscaling via BRP is specifically needed for expression but not induction of NMJ homeostatic plasticity, thus establishing a direct temporal plasticity sequence of molecularly distinct AZ remodeling steps. Notably, when we reduced BRP and associated transport factors in MB intrinsic neurons, short-term memory persisted but robust deficits in stable memory expression for a few hours after conditioning were observed. In contrast, AZ release site protein RIM-BP affecting PHP induction was additionally needed for successful formation of short-term memory. Taken together, our data establish a specific role of homeostatic presynaptic long-term plasticity for memory consolidation. Such homeostatic refinement processes might well be needed to successfully integrate and display synaptic engrams constituting intermediary term memories.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nick J. Spencer ◽  
Lee Travis ◽  
Lukasz Wiklendt ◽  
Marcello Costa ◽  
Timothy J. Hibberd ◽  
...  

AbstractHow the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jingjing Sherry Wu ◽  
Eunyoung Yi ◽  
Marco Manca ◽  
Hamad Javaid ◽  
Amanda M Lauer ◽  
...  

Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal’s recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.


Neuropeptides ◽  
2019 ◽  
Vol 75 ◽  
pp. 65-74
Author(s):  
Shiho Arichi ◽  
Sachie Sasaki-Hamada ◽  
Yuichi Kadoya ◽  
Masanori Ogata ◽  
Hitoshi Ishibashi

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 428 ◽  
Author(s):  
Bradley Barth ◽  
Hsin-I Huang ◽  
Gianna Hammer ◽  
Xiling Shen

Advanced electrode designs have made single-unit neural recordings commonplace in modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges, and we provide design criteria recommendations for enteric microelectrodes.


Author(s):  
Bradley Barth ◽  
Hsin-I Huang ◽  
Gianna Hammer ◽  
Xiling Shen

Advanced electrode designs have made single-unit neural recordings commonplace among modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges.


2018 ◽  
Author(s):  
Runa Hamid ◽  
Nikhil Hajirnis ◽  
Shikha Kushwaha ◽  
Sadaf Saleem ◽  
Vimlesh Kumar ◽  
...  

AbstractInsect mushroom bodies (MB) have an ensemble of synaptic connections well-studied for their role in experience-dependent learning and several higher cognitive functions. MB requires neurotransmission for an efficient flow of information across synapses with the different flexibility to meet the demand of the dynamically changing environment of an insect. Neurotransmitter transporters coordinate appropriate changes for an efficient neurotransmission at the synapse. Till date, there is no transporter reported for any of the previously known neurotransmitters in the intrinsic neurons of MB. In this study, we report a highly enriched expression of Choline Transporter (ChT) in Drosophila MB. We demonstrate that knockdown of ChT in a sub-type of MB neurons called α/β core (α/βc) neurons leads to eclosion failure, peristaltic defect in larvae, and altered NMJ phenotype. These defects were neither observed on knockdown of proteins of the cholinergic locus in α/βc neurons nor by knockdown of ChT in cholinergic neurons. Thus, our study provides insights into non-canonical roles of ChT in MB.


2018 ◽  
Author(s):  
J Y Hilary Wong ◽  
Bo Angela Wan ◽  
Tom Bland ◽  
Marcella Montagnese ◽  
Alex McLachlan ◽  
...  

AbstractDiscrimination of sensory signals is essential for an organism to form and retrieve memories of relevance in a given behavioural context. Sensory representations are modified dynamically by changes in behavioral state, facilitating context-dependent selection of behavior, through signals carried by noradrenergic input in mammals, or octopamine (OA) in insects. To understand the circuit mechanisms of this signaling, we characterized the function of two OA neurons, sVUM1 neurons, that originate in the subesophageal zone (SEZ) and target the input region of the memory center, the mushroom body (MB) calyx, in larval Drosophila. We find that sVUM1 neurons target multiple neurons, including olfactory projection neurons (PNs), the inhibitory neuron APL, and a pair of extrinsic output neurons, but relatively few mushroom body intrinsic neurons, Kenyon cells. PN terminals carried the OA receptor Oamb, a Drosophila α1-adrenergic receptor ortholog. Using an odor discrimination learning paradigm, we showed that optogenetic activation of OA neurons compromised discrimination of similar odors but not learning ability. Our results suggest that sVUM1 neurons modify odor representations via multiple extrinsic inputs at the sensory input area to the MB olfactory learning circuit.


Author(s):  
Lawrence Moon

After axonal injury, chromatolysis (fragmentation of Nissl substance) occurs in both intrinsic neurons (whose processes are within the CNS) and extrinsic neurons (whose axons extend outside the CNS). Electron microscopy shows that chromatolysis involves fission of the rough endoplasmic reticulum. In intrinsic neurons (which do not regenerate axons) or in extrinsic neurons denied axon regeneration, chromatolysis is often accompanied by degranulation (loss of ribosomes from rough endoplasmic reticulum), disaggregation of polyribosomes and degradation of monoribosomes into dust-like particles. Ribosomes and rough endoplasmic reticulum may also be degraded in autophagic vacuoles by Ribophagy and Reticulophagy, respectively. In other words, chromatolysis is disruption of parts of the protein synthesis infrastructure. Whereas some neurons may show transient or no chromatolysis, severely injured neurons can remain chromatolytic and never again synthesise normal levels of protein; some may atrophy or die. What molecule(s) cause fragmentation or degranulation of rough endoplasmic reticulum, disaggregation of polyribosomes and degradation of monoribosomes? Ribonucleases can modify (and perhaps fragment) rough endoplasmic reticulum; various endoribonucleases can degrade mRNA causing polyribosomes to unchain and disperse; they can disassemble monoribosomes; Ribonuclease 5 can control rRNA synthesis and degrade tRNA; Ribonuclease T2 can degrade ribosomes, rough endoplasmic reticulum and RNA within autophagic vacuoles; and Ribonuclease IRE1α acts as a stress sensor within the endoplasmic reticulum. Regeneration might be improved after axonal injury by protecting the protein synthesis machinery from catabolism; targeting ribonucleases could be a profitable strategy.


Sign in / Sign up

Export Citation Format

Share Document