Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy

2005 ◽  
Vol 289 (1) ◽  
pp. H488-H495 ◽  
Author(s):  
Ivo P. Torres Filho ◽  
James Terner ◽  
Roland N. Pittman ◽  
Leonardo G. Somera ◽  
Kevin R. Ward

A system is described for in vivo noninvasive measurements of hemoglobin oxygen saturation (HbO2Sat) at the microscopic level. The spectroscopic basis for the application is resonant Raman enhancement of Hb in the violet/ultraviolet region, allowing simultaneous identification of oxy- and deoxyhemoglobin with the same excitation wavelength. The heme vibrational bands are well known, but the technique has never been used to determine microvascular HbO2Sat in vivo. A diode laser light (power: 0.3 mW) was focused onto sample areas 15–30 μm in diameter. Raman spectra were obtained in backscattering geometry by using a microscope coupled to a spectrometer and a cooled detector. Calibration was performed in vitro by using glass capillaries containing blood at several Hb concentrations, equilibrated at various oxygen tensions. HbO2Sat was estimated using the Raman band intensities at 1,360 and 1,375 cm−1. Glass capillary path length and Hb concentration had no effect on HbO2Sat estimated from Raman spectra. In vivo observations were made in blood flowing in microvessels of the rat mesentery. The Hb Raman peaks observed in oxygenated and deoxygenated blood were consistent with earlier Raman studies that used Hb solutions and isolated cells. The method allowed HbO2Sat determinations in the whole range of arterioles, venules, and capillaries. Tissue transillumination allowed diameter and erythrocyte velocity measurements in the same vessels. Raman microspectroscopy offers distinct advantages over other currently used techniques by providing noninvasive and reliable in vivo determinations of HbO2Sat in thin tissues as well as in solid organs and tissues, which are unsuitable for techniques requiring transillumination.

2008 ◽  
Vol 104 (6) ◽  
pp. 1809-1817 ◽  
Author(s):  
Ivo P. Torres Filho ◽  
James Terner ◽  
Roland N. Pittman ◽  
Elizabeth Proffitt ◽  
Kevin R. Ward

The resonant Raman enhancement of hemoglobin (Hb) in the Q band region allows simultaneous identification of oxy- and deoxy-Hb. The heme vibrational bands are well known at 532 nm, but the technique has never been used to determine microvascular Hb oxygen saturation (So2) in vivo. We implemented a system for in vivo noninvasive measurements of So2. A laser light was focused onto areas of 15–30 μm in diameter. Using a microscope coupled to a spectrometer and a cooled detector, Raman spectra were obtained in backscattering geometry. Calibration was performed in vitro using blood at several Hb concentrations, equilibrated at various oxygen tensions. So2 was estimated by measuring the intensity of Raman signals (peaks) in the 1,355- to 1,380-cm−1 range (oxidation state marker band ν4), as well as from the ν19 and ν10 bands (1,500- to 1,650-cm−1 range). In vivo observations were made in microvessels of anesthetized rats. Glass capillary pathlength and Hb concentration did not affect So2 estimations from Raman spectra. The Hb Raman peaks observed in blood were consistent with earlier Raman studies using Hb solutions and isolated cells. The correlation between Raman-based So2 estimations and So2 measured by CO-oximetry was highly significant for ν4, ν10, and ν19 bands. The method allowed So2 determinations in all microvessel types, while diameter and erythrocyte velocity could be measured in the same vessels. Raman microspectroscopy has advantages over other techniques by providing noninvasive and reliable in vivo So2 determinations in thin tissues, as well as in solid organs and tissues in which transillumination is not possible.


Sign in / Sign up

Export Citation Format

Share Document