Changes in Renal Blood Flow, Extraction of Inulin, Glomerular Filtration Rate, Tissue Pressure and Urine Flow With Acute Alterations of Renal Artery Blood Pressure

1951 ◽  
Vol 167 (3) ◽  
pp. 676-688 ◽  
Author(s):  
R. E. Shipley ◽  
R. S. Study
1988 ◽  
Vol 66 (5) ◽  
pp. 601-607 ◽  
Author(s):  
Satoshi Akabane ◽  
Masahito Imanishi ◽  
Yohkazu Matsushima ◽  
Minoru Kawamura ◽  
Morio Kuramochi ◽  
...  

The objective of this study was to evaluate the renal actions of atrial natriuretic peptide (ANP) in the unilateral postischemic kidney of anesthetized dogs with a severe reduction in glomerular filtration rate. The dose of atrial natriuretic peptide (50 ng∙kg−1∙min−1) we gave did not alter the mean systemic arterial pressure, renal blood flow, and glomerular filtration rate in the normal kidney, as determined in foregoing studies. ANP was infused into the intrarenal artery continuously for 60 min after the release from 45 min of complete renal artery occlusion. In the vehicle-infused group, the glomerular filtration rate fell dramatically (6% of control), the renal blood flow decreased (60% of control), and the mean systemic arterial pressure tended to increase (136% of control). The urine flow rate and urinary excretion of sodium decreased significantly (25 and 25%, respectively) at 30 min after reflow in the postischemic period. Continuous renal artery infusion of ANP resulted in a marked increase in urine flow rate (246% of control) and the urinary excretion of sodium (286% of control). The administration of ANP led to an improvement in renal blood flow (99% of control) and glomerular filtration rate (40% of control), and attenuated the rise in mean systemic arterial pressure (109% of control), compared with findings in the vehicle-infused group. Plasma renin activity and prostaglandin E2 concentration in the renal venous blood were elevated after the release from complete renal artery occlusion in both groups. These results indicate that the vascular effects of ANP on the postischemic kidney were enhanced and that the peptide maintained the natriuretic effect.


1987 ◽  
Vol 65 (11) ◽  
pp. 2219-2224 ◽  
Author(s):  
J. Krayacich ◽  
R. L. Kline ◽  
P. F. Mercer

Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 μg/min, i.v.), an α1 adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (−67 ± 9 vs. −33 ± 8%), glomerular filtration rate (−60 ± 9 vs. −7 ± 20%), urine flow (−61 ± 7 vs. −24 ± 11%), sodium excretion (−51 ± 15 vs. −32 ± 21%), and fractional excretion of sodium (−50 ± 9 vs. −25 ± 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (−54 ± 10 vs. −30 ± 14%), glomerular filtration rate (−51 ± 11 vs. −19 ± 17%), urine flow (−55 ± 10 vs. −39 ± 10%), sodium excretion (−70 ± 9 vs. −59 ± 11%), and fractional excretion of sodium (−53 ± 10 vs. −41 ± 10%). These results suggest that vascular and tubular supersensitivity to norepinephrine in chronically denervated kidneys is due to postsynaptic changes involving α1-adrenergic receptors.


1960 ◽  
Vol 198 (6) ◽  
pp. 1279-1283 ◽  
Author(s):  
Lewis C. Mills ◽  
John H. Moyer ◽  
Carrol A. Handley

The effects of l-epinephrine, l-norepinephrine, phenylephrine, methoxamine, metaraminol and mephentermine on renal hemodynamics were studied in six groups of dogs. Although comparable rises in blood pressure were obtained, there were marked differences in the effects on renal hemodynamics. While infusion of mephentermine led to only slight reductions in glomerular filtration rate and renal blood flow, and only a slight increase in renal vascular resistance, methoxamine produced a marked fall in flow and a marked increase in resistance. The other agents tested had effects which were intermediate between these two. The effects of these same drugs on renal hemodynamics were also compared in dogs made hypotensive by bleeding. While blood pressure increased significantly in all groups, glomerular filtration rate and renal blood flow increased significantly only during infusion of mephentermine, metaraminol and phenylephrine. Since assays relative to the inherent vasodilator properties of these agents revealed epinephrine to be the only agent with marked activity, it seems unlikely that the observed effects were due to this factor. It is concluded that the observed changes were due to a greater reactivity of renal vascular vasoconstrictor adrenergic receptors with certain sympathicomimetic drugs than those of the vasculature in general.


1989 ◽  
Vol 17 (03n04) ◽  
pp. 203-210
Author(s):  
Huei-Yann Tsai ◽  
Ruey-Tean Chiang ◽  
Tzu-Wei Tan ◽  
Ho-Chan Chen

Vandellia cordifolia (COLSM) G, DON of Scrophulariaceae (V. cordifolia) is an annual wild herb indigenous to Taiwan. It can be found in plains, low altitudes, swampy places, and paddy fields. Taiwanese folk physicians use it in "nephritis, uremia, furnucle, carbuncle." The LD50 (95% confidence limit) of the crude exract of V. codifolia given by the oral route was more than 10 g/kg in rats. By the intraperitoneal route, it was 4.6 g/kg (4.35–4.93), The extraction rate was 16.6%. We studied its effects on renal functions and blood pressure and found that (1) it had diuretic effect on normal rats, (2) it decreased glomerular filtration rate and renal blood flow on normal kidneys in rabbits, (3) it had no effects on glomerular filtration rate and renal blood flow on glycerin-induced insufficient kidneys in rabbits, (4) it had diuretic effects on both normal and glycerin-induced insufficient kidneys in rabbits, (5) it could inhibit Na+ and K+ reabsorptionn on normal and glycerin-induced insufficient kidneys in rabbits, (6) it had hypertensive effect and this effect could be blocked by phenoxybenzamine. From the above facts, we conclude that V, cordifolia had diuretic effect and it may act on renal tubules to inhibit Na+ and K+ reabsorption.


1990 ◽  
Vol 78 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Paolo Madeddu ◽  
Nicola Glorioso ◽  
Aldo Soro ◽  
Paolo Manunta ◽  
Chiara Troffa ◽  
...  

1. To evaluate whether sodium intake can modulate the action of endogenous kinins on renal function and haemodynamics, a receptor antagonist of bradykinin was infused in conscious normotensive rats maintained on either a normal or a low sodium diet. 2. The antagonist inhibited the hypotensive effect of exogenously administered bradykinin. It did not change the vasodepressor effect of acetylcholine, dopamine or prostaglandin E2. 3. The antagonist did not affect mean blood pressure, glomerular filtration rate, renal blood flow or urinary sodium excretion, in rats on sodium restriction. It did not change mean blood pressure, glomerular filtration rate or urinary sodium excretion, but decreased renal blood flow, in rats on a normal sodium intake. 4. The kallikrein–kinin system has a role in the regulation of renal blood flow in rats on a normal sodium diet.


1988 ◽  
Vol 74 (1) ◽  
pp. 63-69 ◽  
Author(s):  
S. B. Harrap ◽  
A. E. Doyle

1. To determine the relevance of renal circulatory abnormalities found in the immature spontaneously hypertensive rat (SHR) to the genetic hypertensive process, glomerular filtration rate and renal blood flow were measured in conscious F2 rats, derived from crossbreeding SHR and normotensive Wistar–Kyoto rats (WKY), at 4, 11 and 16 weeks of age by determining the renal clearances of 51Cr-ethylenediaminetetra-acetate and 125I-hippuran respectively. Plasma renin activity was measured at 11 and 16 weeks of age. 2. Mean arterial pressure, glomerular filtration rate and renal blood flow increased between 4 and 11 weeks of age. Between 11 and 16 weeks the mean glomerular filtration rate and renal blood flow did not alter, although the mean arterial pressure rose significantly. At 11 weeks of age, during the developmental phase of hypertension, a significant negative correlation between mean arterial pressure and both glomerular filtration rate and renal blood flow was noted. However, by 16 weeks when the manifestations of genetic hypertension were more fully expressed, no correlation between mean arterial pressure and renal blood flow or glomerular filtration rate was observed. Plasma renin activity was negatively correlated with both glomerular filtration rate and renal blood flow, but the relationship was stronger at 11 than at 16 weeks of age. 3. These results suggest that the reduction in renal blood flow and glomerular filtration rate, found in immature SHR, is genetically linked to the hypertension and may be of primary pathogenetic importance. It is proposed that the increased renal vascular resistance in these young animals stimulates the rise of systemic arterial pressure which returns renal blood flow and glomerular filtration rate to normal.


Sign in / Sign up

Export Citation Format

Share Document