scholarly journals IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways

2001 ◽  
Vol 280 (6) ◽  
pp. L1094-L1103 ◽  
Author(s):  
Ingrid U. Schraufstatter ◽  
Janice Chung ◽  
Meike Burger

Stimulation of microvascular endothelial cells with interleukin (IL)-8 leads to cytoskeletal reorganization, which is mediated by combined activation of the CXCR1 and the CXCR2. In the early phase actin stress fibers appear, followed by cortical actin accumulation and cell retraction leading to gap formation between cells. The early response (between 1 and 5 min) is inhibited by an antibody that blocks the CXCR1. The later phase (from about 5 to 60 min), which is associated with cell retraction, is prevented by anti-CXCR2 antibody. Furthermore, anti-CXCR2, but not anti-CXCR1, antibody blocked IL-8-mediated haptotaxis of endothelial cells on collagen. The later phase of the IL-8-mediated actin response is inhibited by pertussis toxin, indicating that the CXCR2 couples to Gi. In contrast, the early phase is blocked by C3 botulinum toxin, which inactivates Rho, and by Y-27632, which inhibits Rho kinase, but not by pertussis toxin. Furthermore, the early CXCR1-mediated formation of stress fibers was prevented by dominant negative Rho. Dominant negative Rac on the other hand initially translocated to actin-rich filopodia after stimulation with IL-8 and later prevented cell retraction by blocking the CXCR2-mediated cytoskeletal response. These results indicate that IL-8 activates both the CXCR1 and the CXCR2 on microvascular endothelial cells, using different signal transduction cascades. The retraction of endothelial cells due to activation of the CXCR2 may contribute to the increased vascular permeability observed in acute inflammation and during the angiogenic response.

2008 ◽  
Vol 86 (12) ◽  
pp. 2624-2640 ◽  
Author(s):  
Changming Lu ◽  
Steven Pelech ◽  
Hong Zhang ◽  
Jeffrey Bond ◽  
Karen Spach ◽  
...  

1990 ◽  
Vol 258 (1) ◽  
pp. H198-H206 ◽  
Author(s):  
C. J. Meininger ◽  
H. J. Granger

This study investigated the mechanisms by which adenosine stimulates proliferation of microvascular endothelial cells. The metabolic byproducts of adenosine, inosine and hypoxanthine were unable to stimulate proliferation. When adenosine uptake was prevented, the stimulation of proliferation was unchanged, suggesting that uptake of adenosine with subsequent incorporation into the nucleotide pool is not the mechanism for increasing proliferation. Treatment of endothelial cells with adenosine analogues, presumably selective for either the A1 or A2 receptor, stimulated proliferation equally. This suggested that adenosine 3', 5'-cyclic monophosphate (cAMP) might not mediate the proliferative response to adenosine. However, radioimmunoassay of cell extracts after treatment with either analogue showed an increase in cAMP. In addition, adenylate cyclase blockade with 2', 5'-dideoxyadenosine prevented the proliferative response brought about by these analogues. These data suggest that the proliferative response to adenosine depends on an increase in cAMP. A 2-h pulse of cholera toxin stimulated endothelial cell proliferation, further supporting a role for cAMP. Pretreatment of endothelial cells with pertussis toxin blocked the stimulation of proliferation, indicating that a Gi or similar G protein is also involved in proliferation. We conclude that the proliferative response to adenosine involves a pertussis toxin-sensitive substrate as well as an increase in cAMP.


2008 ◽  
Vol 294 (4) ◽  
pp. L676-L685 ◽  
Author(s):  
Meetha Medhora ◽  
Anuradha Dhanasekaran ◽  
Phillip F. Pratt ◽  
Craig R. Cook ◽  
Laurel K. Dunn ◽  
...  

The signaling mechanisms in vasculogenesis and/or angiogenesis remain poorly understood, limiting the ability to regulate growth of new blood vessels in vitro and in vivo. Cultured human lung microvascular endothelial cells align into tubular networks in the three-dimensional matrix, Matrigel. Overexpression of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates the ERK, JNK, and p38 pathways, inhibited network formation of these cells. Adenoviral-mediated overexpression of recombinant MKP-3 (a dual specificity phosphatase that specifically inactivates the ERK pathway) and dominant negative or constitutively active MEK did not attenuate network formation in Matrigel compared with negative controls. This result suggested that the ERK pathway may not be essential for tube assembly, a conclusion which was supported by the action of specific MEK inhibitor PD 184352, which also did not alter network formation. Inhibition of the JNK pathway using SP-600125 or l-stereoisomer (l-JNKI-1) blocked network formation, whereas the p38 MAPK blocker SB-203580 slightly enhanced it. Inhibition of JNK also attenuated the number of small vessel branches in the developing chick chorioallantoic membrane. Our results demonstrate a specific role for the JNK pathway in network formation of human lung endothelial cells in vitro while confirming that it is essential for the formation of new vessels in vivo.


2012 ◽  
Vol 82 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Zahide Cavdar ◽  
Mehtap Y. Egrilmez ◽  
Zekiye S. Altun ◽  
Nur Arslan ◽  
Nilgun Yener ◽  
...  

The main pathophysiology in cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Among the human matrix metalloproteinases (MMPs), MMP-2 and -9, known as gelatinases, are the key enzymes for degrading type IV collagen, which is the major component of the basal membrane that surrounds the cerebral blood vessel. In the present study, we investigated the effects of resveratrol on cytotoxicity, reactive oxygen species (ROS), and gelatinases (MMP-2 and -9) in human cerebral microvascular endothelial cells exposed to 6 hours of oxygen-glucose deprivation and a subsequent 24 hours of reoxygenation with glucose (OGD/R), to mimic ischemia/reperfusion in vivo. Lactate dehydrogenase increased significantly, in comparison to that in the normoxia group. ROS was markedly increased in the OGD/R group, compared to normoxia. Correspondingly, ROS was significantly reduced with 50 μM of resveratrol. The proMMP-2 activity in the OGD/R group showed a statistically significant increase from the control cells. Resveratrol preconditioning decreased significantly the proMMP-2 in the cells exposed to OGD/R in comparison to that in the OGD/R group. Our results indicate that resveratrol regulates MMP-2 activity induced by OGD/R via its antioxidant effect, implying a possible mechanism related to the neuroprotective effect of resveratrol.


Sign in / Sign up

Export Citation Format

Share Document