angiotensin i converting enzyme
Recently Published Documents


TOTAL DOCUMENTS

1998
(FIVE YEARS 214)

H-INDEX

99
(FIVE YEARS 10)

2021 ◽  
Author(s):  
Fadoua Jabeur ◽  
Sondes Mechri ◽  
Fethi Mensi ◽  
Ines Gharbi ◽  
Yosri Ben Naser ◽  
...  

Abstract The diversity of marine biomasses is a set of exploitable and renewable resources with application in several sectors. In this context, a co-culture based on three protease-producing bacterial isolates namely; Aeribacillus pallidus VP3, Lysinibacillus fusiformis C250R, and Anoxybacillus kamchatkensis M1V strains, was carried out in a medium based on the blue swimming crab Portunus segnis bio-waste. Proteases production was optimized using a central composite design (CCD). The highest level of proteases production obtained was 8,809 U/mL in a medium comprising 75 g/L of Portunus segnis by-product powder (Pspp). The biological value of Pspp and its obtained derivates were evidenced via accredited protocols. The recovered protein hydrolysate (PHyd) was found to be active towards radical scavenging power, and against angiotensin I-converting enzyme (ACE). The blue crab chitin (BC) extraction efficiency was achieved with a yield of 32%. Afterward, chitosan was prepared through chitin N-deacetylation with a yield of 52%, leading to an acetylation degree (AD) of 19% and solubility of 90%. In addition, chitosan is found to be active against the growth of all pathogenic bacteria tested.


2021 ◽  
Author(s):  
Arijit Samanta ◽  
Syed Sahajada Mahafujul Alam ◽  
Safdar Ali ◽  
Mehboob Hoque

The newly identified Omicron (B.1.1.529) variant of Severe Acute Respiratory Syndrome Voronavirus 2 (SARS-CoV-2) has steered concerns across the world due to the possession of large number of mutations leading to high infectivity and vaccine escape potential. The Omicron variant houses 32 mutations in S protein alone. The viral infectivity is determined mainly by the ability of spike (S) protein receptor binding domain (RBD) to bind to the human Angiotensin I Converting Enzyme 2 (hACE2) receptor. In this paper, the interaction of the RBDs of SARS-CoV-2 variants with hACE2 was analyzed by using protein-protein docking and compared with the novel Omicron variant. Our findings reveal that the Omicron RBD interacts strongly with hACE2 receptor via unique amino acid residues as compared to the Wuhan and many other variants. However, the interacting residues of RBD are found to be the same in Lamda (C.37) variant. These unique binding of Omicron RBD with hACE2 suggests an increased potential of infectivity and vaccine evasion potential of the new variant. The evolutionary drive of the SARS-CoV-2 may not be exclusively driven by RBD variants but surely provides for the platform for emergence of new variants.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3572
Author(s):  
Mina Pencheva ◽  
Donka Keskinova ◽  
Pavel Rashev ◽  
Yvetta Koeva ◽  
Nina Atanassova

Testicular angiotensin converting enzyme (ACE) is known to play an essential role in the male reproduction and fertility. Data about tACE in cases of male infertility are quite scarce, and in this respect we aimed to study localization and distribution of tACE protein in the neck and mid-piece of spermatozoa from pathological samples in relation to sperm motility. The enzyme expression during capacitation and acrosome reaction was quantitatively assessed. In human ejaculated spermatozoa tACE is localized on sperm plasma membrane of the head, the neck and mid-piece of the tail. The immunoreactivity becomes stronger in capacitated spermatozoa followed by a decrease in acrosome reacted sperm. In different cases of semen pathology (oligozoospermia, asthenozoospermia and teratozoospermia) fluorescent signals in the neck and mid-piece are in punctate manner whereas in normozoospermia they were uniformly distributed. The expression area of tACE the neck and mid-piece was decreased in ejaculated and capacitated sperm from pathological semen samples compared to normospermia. Significant positive correlation was established between tACE area and progressive sperm motility, whereas with immotile sperm the correlation was negative. Our data suggest that proper distribution of tACE in the neck and mid-piece is required for normal sperm motility that could be used as a novel biomarker for male infertility.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 651
Author(s):  
Yongchang Su ◽  
Shicheng Chen ◽  
Shuilin Cai ◽  
Shuji Liu ◽  
Nan Pan ◽  
...  

Alcalase, neutral protease, and pepsin were used to hydrolyze the skin of Takifugu flavidus. The T. flavidus hydrolysates (TFHs) with the maximum degree of hydrolysis (DH) and angiotensin-I-converting enzyme (ACE)-inhibitory activity were selected and then ultra-filtered to obtain fractions with components of different molecular weights (MWs) (<1, 1–3, 3–10, 10–50, and >50 kDa). The components with MWs < 1 kDa showed the strongest ACE-inhibitory activity with a half-maximal inhibitory concentration (IC50) of 0.58 mg/mL. Purification and identification using semi-preparative liquid chromatography, Sephadex G-15 gel chromatography, RP-HPLC, and LC–MS/MS yielded one new potential ACE-inhibitory peptide, PPLLFAAL (non-competitive suppression mode; IC50 of 28 μmmol·L−1). Molecular docking and molecular dynamics simulations indicated that the peptides should bind well to ACE and interact with amino acid residues and the zinc ion at the ACE active site. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that PPLLFAAL could significantly decrease the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHRs after intravenous administration. These results suggested that PPLLFAAL may have potential applications in functional foods or pharmaceuticals as an antihypertensive agent.


Sign in / Sign up

Export Citation Format

Share Document