brain microvascular endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

757
(FIVE YEARS 186)

H-INDEX

63
(FIVE YEARS 8)

2022 ◽  
pp. 1-22
Author(s):  
Anna Barlach Pritchard ◽  
Zsolt Fabian ◽  
Clare L. Lawrence ◽  
Glyn Morton ◽  
StJohn Crean ◽  
...  

Background: The effects of the key pathogens and virulence factors associated with gum disease such as Porphyromonas gingivalis (P. gingivalis) on the central nervous system is of great interest with respect to development of neuropathologies and hence therapeutics and preventative strategies. Chronic infections and associated inflammation are known to weaken the first line of defense for the brain, the blood-brain barrier (BBB). Objective: The focus of this study is to utilize an established human in vitro BBB model to evaluate the effects of P. gingivalis virulence factors lipopolysaccharide (LPS) and outer membrane vesicles (OMVs) on a primary-derived human model representing the neurovascular unit of the BBB. Methods: Changes to the integrity of the BBB after application of P. gingivalis LPS and OMVs were investigated and correlated with transport of LPS. Additionally, the effect of P. gingivalis LPS and OMVs on human brain microvascular endothelial cells in monolayer was evaluated using immunofluorescence microscopy. Results: The integrity of the BBB model was weakened by application of P. gingivalis LPS and OMVs, as measured by a decrease in electrical resistance and a recovery deficit was seen in comparison to the controls. Application of P. gingivalis OMVs to a monoculture of human brain microvascular endothelial cells showed disruption of the tight junction zona occludens protein (ZO-1) compared to controls. Conclusion: These findings show that the integrity of tight junctions of the human BBB could be weakened by association with P. gingivalis virulence factors LPS and OMVs containing proteolytic enzymes (gingipains).


2021 ◽  
pp. 1-10
Author(s):  
Mako Okudera ◽  
Minami Odawara ◽  
Masashi Arakawa ◽  
Shogo Kawaguchi ◽  
Kazuhiko Seya ◽  
...  

<b><i>Introduction:</i></b> Invasion of viruses into the brain causes viral encephalitis, which can be fatal and causes permanent brain damage. The blood-brain barrier (BBB) protects the brain by excluding harmful substances and microbes. Brain microvascular endothelial cells are important components of the BBB; however, the mechanisms of antiviral reactions in these cells have not been fully elucidated. Zinc-finger antiviral protein (ZAP) is a molecule that restricts the infection of various viruses, and there are 2 major isoforms: ZAPL and ZAPS. Toll-like receptor 3 (TLR3), a pattern-recognition receptor against viral double-stranded RNA, is implicated in antiviral innate immune reactions. The aim of this study was to investigate the expression of ZAP in cultured hCMEC/D3 human brain microvascular endothelial cells treated with an authentic TLR3 agonist polyinosinic-polycytidylic acid (poly IC). <b><i>Methods:</i></b> hCMEC/D3 cells were cultured and treated with poly IC. Expression of ZAPL and ZAPS mRNA was investigated using quantitative reverse transcription-polymerase chain reaction, and protein expression of these molecules was examined using western blotting. The role of nuclear factor-κB (NF-κB) was examined using the NF-κB inhibitor, SN50. The roles of interferon (IFN)-β, IFN regulatory factor 3 (IRF3), tripartite motif protein 25 (TRIM25), and retinoic acid-inducible gene-I (RIG-I) in poly IC-induced ZAPS expression were examined using RNA interference. Propagation of Japanese encephalitis virus (JEV) was examined using a focus-forming assay. <b><i>Results:</i></b> ZAPS mRNA and protein expression was upregulated by poly IC, whereas the change of ZAPL mRNA and protein levels was minimal. Knockdown of IRF3 or TRIM25 decreased the poly IC-induced upregulation of ZAPS, whereas knockdown of IFN-β or RIG-I did not affect ZAPS upregulation. SN50 did not affect ZAPS expression. Knockdown of ZAP enhanced JEV propagation. <b><i>Conclusion:</i></b> ZAPL and ZAPS were expressed in hCMEC/D3 cells, and ZAPS expression was upregulated by poly IC. IRF3 and TRIM25 are involved in poly IC-induced upregulation of ZAPS. ZAP may contribute to antiviral reactions in brain microvascular endothelial cells and protect the brain from invading viruses such as JEV.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hui Li ◽  
Guochao Han ◽  
Dongruo He ◽  
Ying Wang ◽  
Yuan Lin ◽  
...  

This study aimed to explore the expression level of miR-539 in the blood-brain barrier permeability induced by cerebrovascular occlusion and its mediated mechanism. Altogether, 48 patients with cerebral vascular occlusion lesions from March 2018 to June 2020 were collected. The expression level of miR-539 in the peripheral blood serum of the subjects was analyzed by qRT-PCR, and the participants were divided into two groups according to the results of head and neck ultrasound and CTA hemodynamics. The MCAO model of cerebral ischemia was established in rats, and the expression level of miR-539 was detected by qRT-PCR in brain tissues of different groups of rats. The effects of miR-539 on the permeability of blood-brain barrier were investigated by intraventricular injection of agomiR-539 and antagomir-539. The model of blood-brain barrier was established by culturing brain microvascular endothelial cells and pericytes in vitro, and the changes of miR-539 expression level and permeability after glucose and oxygen deprivation were detected. The expression level of SNAI2/MMP9 signaling pathway protein in cells was detected by Western blot. Compared with the healthy control group, the expression level of miR-539 in peripheral blood of patients with cerebrovascular occlusive disease decreased significantly, and the expression level of miR-539 in the MCAO rat model decreased and affected the permeability of blood-brain barrier. Glucose and oxygen deprivation treatment in brain microvascular endothelial cells can lead to downregulation of miR-539 expression and affect cell permeability. miR-539 in brain microvascular endothelial cells can target and bind to SNAI2 and participate in the regulation of endothelial cell permeability by affecting the SNAI2/MMP9 signaling pathway. The results of this study suggested that circulating miR-539 in peripheral blood may be a potential marker for predicting blood-brain barrier permeability after ischemic stroke. More detailed studies are needed to determine its diagnostic value.


Author(s):  
Luke S. Watson ◽  
Brynna Wilken-Resman ◽  
Alexus Williams ◽  
Guadalupe Sanchez ◽  
Taylor Lowry McLeod ◽  
...  

Insulin receptors are internalized by endothelial cells; however, the impact of hyperinsulinemia on this process is not known. Thus, the aim of this study is to determine the role of hyperinsulinemia on insulin receptor function and internalization, as well as the potential impact of protein tyrosine phosphatase 1B (PTP1B). To this end, hippocampal microvessels were isolated from male C57Bl/6J mice on either a control or high-fat diet and assessed for insulin receptor signaling. Cell surface insulin receptors in brain microvascular endothelial cells were labelled with biotin to assess the role hyperinsulinemia plays on receptor internalization in response to stimulation, with and without Claramine treatment, a potent PTP1B antagonist. Our results indicated that insulin receptor levels increased in tandem with insulin receptor dysfunction in the high-fat diet mouse hippocampal microvessels. Hyperinsulinemic cell-receptors demonstrate a shift in splice variation towards decreased IR-A/IR-B ratios and demonstrate a higher membrane-localized proportion. This corresponded with decreased autophosphorylation at sites critical for receptor internalization and signaling, however, Claramine restored signaling and receptor internalization in hyperinsulinemic cells. In conclusion, hyperinsulinemia negatively impacts brain microvascular endothelial cell insulin receptor function and internalization, likely through both alternative splicing and increased negative feedback from PTP1B.


Sign in / Sign up

Export Citation Format

Share Document