microvascular endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

3026
(FIVE YEARS 512)

H-INDEX

101
(FIVE YEARS 10)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Chi Zhang ◽  
Wei Zhang ◽  
Dashuai Zhu ◽  
Zhenhua Li ◽  
Zhenzhen Wang ◽  
...  

Abstract Background Osteoporosis is a chronic condition affecting patients’ morbidity and mortality and represents a big socioeconomic burden. Because stem cells can proliferate and differentiate into bone-forming cells, stem cell therapy for osteoporosis has been widely studied. However, cells as a live drug face multiple challenges because of their instability during preservation and transportation. In addition, cell therapy has potential adverse effects such as embolism, tumorigenicity, and immunogenicity. Results Herein, we sought to use cell-mimicking and targeted therapeutic nanoparticles to replace stem cells. We fabricated nanoparticles (NPs) using polylactic-co-glycolic acid (PLGA) loaded with the secretome (Sec) from mesenchymal stem cells (MSCs) to form MSC-Sec NPs. Furthermore, we cloaked the nanoparticles with the membranes from C–X–C chemokine receptor type 4 (CXCR4)-expressing human microvascular endothelial cells (HMECs) to generate MSC-Sec/CXCR4 NP. CXCR4 can target the nanoparticles to the bone microenvironment under osteoporosis based on the CXCR4/SDF-1 axis. Conclusions In a rat model of osteoporosis, MSC-Sec/CXCR4 NP were found to accumulate in bone, and such treatment inhibited osteoclast differentiation while promoting osteogenic proliferation. In addition, our results showed that MSC-Sec/CXCR4 NPs reduce OVX-induced bone mass attenuation in OVX rats. Graphical Abstract


2022 ◽  
Author(s):  
Qizhi Wang ◽  
Min Liu ◽  
Yu Liu ◽  
Zhen Zhang ◽  
Zhengping Bai

Abstract Objective: To investigate the effects of cigarette smoke extract (CSE) and lipopolysaccharide (LPS) on the activity and pyroptosis of pulmonary microvascular endothelial cells (PMVECs). Methods: PMVECs were cultured without treatment or with CSE (1%-25%), LPS, or CSE+LPS. Cell viability was detected using the CCK8 method. Apoptosis was evaluated by flow cytometry. Cell morphology was evaluated using optical microscopy. The content of IL-1β and IL-18 was measured by ELISA. Results: CSE decreased cell viability in a dose-dependent manner. The cells in the CSE+LPS group showed the most obvious cytomorphological changes and the highest pyroptosis rate under the microscope. Flow cytometry showed that the CSE and LPS groups showed higher apoptosis rates than the blank group; the apoptotic rate in the CSE+LPS group was even higher (P<0.01). Compared with the bkank group, the levels of IL-18 and IL-1β in the cell supernatant of the CSE, LPS, and CSE+LPS groups increased significantly, with significant differences (P<0.01). There were no differences between the CSE and LPS groups (P>0.05). Compared with the CSE and LPS groups, the CSE+LPS group had higher IL-18 and IL-1β (P<0.01). Conclusion: The effect of CSE on cell viability is dose-dependent. CSE+LPS can induce cell pyroptosis and increase the levels of inflammatory cytokines in PMVECs. These observations demonstrated that pyroptosis caused by CSE and LPS might play an important role in pulmonary vascular remodeling.


2022 ◽  
pp. 1-22
Author(s):  
Anna Barlach Pritchard ◽  
Zsolt Fabian ◽  
Clare L. Lawrence ◽  
Glyn Morton ◽  
StJohn Crean ◽  
...  

Background: The effects of the key pathogens and virulence factors associated with gum disease such as Porphyromonas gingivalis (P. gingivalis) on the central nervous system is of great interest with respect to development of neuropathologies and hence therapeutics and preventative strategies. Chronic infections and associated inflammation are known to weaken the first line of defense for the brain, the blood-brain barrier (BBB). Objective: The focus of this study is to utilize an established human in vitro BBB model to evaluate the effects of P. gingivalis virulence factors lipopolysaccharide (LPS) and outer membrane vesicles (OMVs) on a primary-derived human model representing the neurovascular unit of the BBB. Methods: Changes to the integrity of the BBB after application of P. gingivalis LPS and OMVs were investigated and correlated with transport of LPS. Additionally, the effect of P. gingivalis LPS and OMVs on human brain microvascular endothelial cells in monolayer was evaluated using immunofluorescence microscopy. Results: The integrity of the BBB model was weakened by application of P. gingivalis LPS and OMVs, as measured by a decrease in electrical resistance and a recovery deficit was seen in comparison to the controls. Application of P. gingivalis OMVs to a monoculture of human brain microvascular endothelial cells showed disruption of the tight junction zona occludens protein (ZO-1) compared to controls. Conclusion: These findings show that the integrity of tight junctions of the human BBB could be weakened by association with P. gingivalis virulence factors LPS and OMVs containing proteolytic enzymes (gingipains).


2022 ◽  
Vol 12 ◽  
Author(s):  
Sara Petrillo ◽  
Tullio Genova ◽  
Giorgia Chinigò ◽  
Ilaria Roato ◽  
Giorgia Scarpellino ◽  
...  

Bone formation involves a complex crosstalk between endothelial cells (EC) and osteodifferentiating stem cells. This functional interplay is greatly mediated by the paracrine and autocrine action of soluble factors released at the vasculature-bone interface. This study elucidates the molecular and functional responses triggered by this intimate interaction. In this study, we showed that human dermal microvascular endothelial cells (HMEC) induced the expression of pro-angiogenic factors in stem cells from human exfoliated deciduous teeth (SHED) and sustain their osteo-differentiation at the same time. In contrast, osteodifferentiating SHED increased EC recruitment and promoted the formation of complex vascular networks. Moreover, HMEC enhanced anaerobic glycolysis in proliferating SHED without compromising their ability to undergo the oxidative metabolic shift required for adequate osteo-differentiation. Taken together, these findings provide novel insights into the molecular mechanism underlying the synergistic cooperation between EC and stem cells during bone tissue renewal.


Sign in / Sign up

Export Citation Format

Share Document