Oxygen-induced fetal pulmonary vasodilation is mediated by intracellular calcium activation of KCa channels

2001 ◽  
Vol 281 (6) ◽  
pp. L1379-L1385 ◽  
Author(s):  
Valerie A. Porter ◽  
Michael T. Rhodes ◽  
Helen L. Reeve ◽  
David N. Cornfield

O2 sensing in fetal pulmonary artery smooth muscle is critically important in the successful transition to air breathing at birth. However, the mechanism by which the fetal pulmonary vasculature senses and responds to an acute increase in O2tension is not known. Isolated fetal pulmonary artery smooth muscle cells were kept in primary culture for 5–14 days in a hypoxic environment (20–30 mmHg). These cells showed a 25.1 ± 1.7% decrease in intracellular calcium in response to an acute increase in O2 tension. Low concentrations of caffeine (0.5 mM) and diltiazem also decreased intracellular calcium. The decrease in intracellular calcium concentration in response to increasing O2 was inhibited by iberiotoxin and ryanodine. Freshly isolated fetal pulmonary artery smooth muscle cells exhibited “spontaneous transient outward currents,” indicative of intracellular calcium spark activation of calcium-sensitive potassium channels. The frequency of spontaneous transient outward currents increased when O2 tension was increased to normoxic levels. Increasing fetal pulmonary O2 tension in acutely instrumented fetal sheep increased fetal pulmonary blood flow. Ryanodine attenuated O2-induced pulmonary vasodilation. This study demonstrates that fetal pulmonary vascular smooth muscle cells are capable of responding to an acute increase in O2tension and that this O2 response is mediated by intracellular calcium activation of calcium-sensitive potassium channels.

2007 ◽  
Vol 292 (4) ◽  
pp. L953-L959 ◽  
Author(s):  
Ernesto R. Resnik ◽  
Maggie Keck ◽  
David J. Sukovich ◽  
Jean M. Herron ◽  
David N. Cornfield

Oxygen causes perinatal pulmonary dilatation. Although fetal pulmonary artery smooth muscle cells (PA SMC) normally respond to an acute increase in oxygen (O2) tension with a decrease in cytosolic calcium ([Ca2+]i), an acute increase in O2 tension has no net effect on [Ca2+]i in PA SMC derived from lambs with chronic intrauterine pulmonary hypertension (PHTN). The present experimental series tests the hypothesis that an acute increase in O2 tension decreases capacitative calcium entry (CCE) in normal, but not hypertensive, fetal PA SMC. PA SMC were isolated from late-gestation fetal lambs after either ligation of the ductus arteriosus (PHTN) or sham (control) operation at 127 days gestation. PA SMC were isolated from the distal PA (≥4th generation) and maintained under hypoxic conditions (∼25 Torr) in primary culture. After fura 2 loading, apparent [Ca2+]i in PA SMC was determined as the ratio of 340- to 380-nm fluorescence intensity. Under both hypoxic and normoxic conditions, cyclopiazonic acid (CPA) increased [Ca2+]i more in PHTN than in control PA SMC. CCE was determined in PA SMC under hypoxic and normoxic conditions, after superfusion with zero extracellular Ca2+ and intracellular store depletion with CPA, followed by superfusion with Ca2+-containing solution, in the presence of the voltage-operated calcium channel blockade. CCE was increased in PHTN compared with control PA SMC under conditions of both acute and sustained normoxia. Transient receptor potential channel gene expression was greater in control compared with PHTN PA SMC. PHTN may compromise perinatal pulmonary vasodilation, in part, by modulating PA SMC CCE.


CHEST Journal ◽  
1998 ◽  
Vol 114 (1) ◽  
pp. 29S-30S ◽  
Author(s):  
Edward C. Dempsey ◽  
Mita Das ◽  
Maria G. Frid ◽  
Yongjian Xu ◽  
Kurt R. Stenmark

2006 ◽  
Vol 44 (5) ◽  
pp. 275-282 ◽  
Author(s):  
Yan-Ping Dai ◽  
Shaner Bongalon ◽  
Honglin Tian ◽  
Samuel D. Parks ◽  
Violeta N. Mutafova-Yambolieva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document