knockout mouse
Recently Published Documents


TOTAL DOCUMENTS

1380
(FIVE YEARS 205)

H-INDEX

82
(FIVE YEARS 6)

Author(s):  
Takafumi Matsumura ◽  
Taichi Noda ◽  
Yuhkoh Satouh ◽  
Akane Morohoshi ◽  
Shunsuke Yuri ◽  
...  

Fertilization occurs as the culmination of multi-step complex processes. First, mammalian spermatozoa undergo the acrosome reaction to become fusion-competent. Then, the acrosome-reacted spermatozoa penetrate the zona pellucida and adhere to and finally fuse with the egg plasma membrane. IZUMO1 is the first sperm protein proven to be essential for sperm-egg fusion in mammals, as Izumo1 knockout mouse spermatozoa adhere to but fail to fuse with the oolemma. However, the IZUMO1 function in other species remains largely unknown. Here, we generated Izumo1 knockout rats by CRISPR/Cas9 and found the male rats were infertile. Unlike in mice, Izumo1 knockout rat spermatozoa failed to bind to the oolemma. Further investigation revealed that the acrosome-intact sperm binding conceals a decreased number of the acrosome-reacted sperm bound to the oolemma in Izumo1 knockout mice. Of note, we could not see any apparent defects in the binding of the acrosome-reacted sperm to the oolemma in the mice lacking recently found fusion-indispensable genes, Fimp, Sof1, Spaca6, or Tmem95. Collectively, our data suggest that IZUMO1 is required for the sperm-oolemma binding prior to fusion at least in rat.


2021 ◽  
Author(s):  
Hannah Demond ◽  
Courtney W Hanna ◽  
Juan Castillo-Fernandez ◽  
Fatima Santos ◽  
Evangelina K Papachristou ◽  
...  

GLP (EHMT1) functions as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with G9A (EHMT2). Here, we investigated the role of GLP in oocyte and embryo development in comparison to G9A using oocyte-specific conditional knockout mouse models (G9a cKO, Glp cKO, G9a-Glp cDKO). Loss of GLP in oogenesis severely impairs oocyte maturation, fertilization and embryo development, resulting in lethality before embryonic day E12.5. In contrast, loss of G9A has a milder effect with a proportion of embryos producing viable offspring. The Glp cKO also showed loss of G9A protein and, hence, was phenotypically very similar to the G9a-Glp cDKO. H3K9me2 was equally depleted in all cKO genotypes, whereas H3K9me1 was decreased only in Glp cKO and G9a-Glp cDKO oocytes. Furthermore, the transcriptome, DNA methylome and proteome were markedly more affected in G9a-Glp cDKO than G9a cKO oocytes, demonstrating that in the absence of GLP there are widespread epigenetic and gene expression changes in the oocyte independent of H3K9me2. Gene dysregulation with coupled changes in DNA methylation suggest localised loss of chromatin repression, resulting in upregulated protein expression. Together, our findings demonstrate that GLP can function independently of G9A in the oocyte and is required for oocyte developmental competence.


2021 ◽  
Vol 160 ◽  
pp. 105529
Author(s):  
Vanessa L. Breton ◽  
Mark S. Aquilino ◽  
Srinivasarao Repudi ◽  
Afifa Saleem ◽  
Shanthini Mylvaganam ◽  
...  

Neuron ◽  
2021 ◽  
Author(s):  
Katrina Y. Choe ◽  
Richard A.I. Bethlehem ◽  
Martin Safrin ◽  
Hongmei Dong ◽  
Elena Salman ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tatsuaki Kurosaki ◽  
Hitomi Sakano ◽  
Christoph Pröschel ◽  
Jason Wheeler ◽  
Alexander Hewko ◽  
...  

Abstract Background Fragile X syndrome (FXS) is an intellectual disability attributable to loss of fragile X protein (FMRP). We previously demonstrated that FMRP binds mRNAs targeted for nonsense-mediated mRNA decay (NMD) and that FMRP loss results in hyperactivated NMD and inhibition of neuronal differentiation in human stem cells. Results We show here that NMD is hyperactivated during the development of the cerebral cortex, hippocampus, and cerebellum in the Fmr1-knockout (KO) mouse during embryonic and early postnatal periods. Our findings demonstrate that NMD regulates many neuronal mRNAs that are important for mouse brain development. Conclusions We reveal the abnormal regulation of these mRNAs in the Fmr1-KO mouse, a model of FXS, and highlight the importance of early intervention.


2021 ◽  
Vol 9 (21) ◽  
Author(s):  
Leonel F. Pérez‐Atencio ◽  
Ana M. Casarrubios ◽  
José M. Ibarz ◽  
Juan A. Barios ◽  
Cristina Medrano ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 1353
Author(s):  
Eliana Lousada ◽  
Mathieu Boudreau ◽  
Julien Cohen-Adad ◽  
Brahim Nait Oumesmar ◽  
Eric Burguière ◽  
...  

Pathological repetitive behaviours are a common feature of various neuropsychiatric disorders, including compulsions in obsessive–compulsive disorder or tics in Gilles de la Tourette syndrome. Clinical research suggests that compulsive-like symptoms are related to associative cortico-striatal dysfunctions, and tic-like symptoms to sensorimotor cortico-striatal dysfunctions. The Sapap3 knockout mouse (Sapap3-KO), the current reference model to study such repetitive behaviours, presents both associative as well as sensorimotor cortico-striatal dysfunctions. Previous findings point to deficits in both macro-, as well as micro-circuitry, both of which can be affected by neuronal structural changes. However, to date, structural connectivity has not been analysed. Hence, in the present study, we conducted a comprehensive structural characterisation of both associative and sensorimotor striatum as well as major cortical areas connecting onto these regions. Besides a thorough immunofluorescence study on oligodendrocytes, we applied AxonDeepSeg, an open source software, to automatically segment and characterise myelin thickness and axon area. We found that axon calibre, the main contributor to changes in conduction speed, is specifically reduced in the associative striatum of the Sapap3-KO mouse; myelination per se seems unaffected in associative and sensorimotor cortico-striatal circuits.


Sign in / Sign up

Export Citation Format

Share Document