Hormonal responses to gradual changes in dietary sodium intake in humans

1989 ◽  
Vol 256 (6) ◽  
pp. R1171-R1175 ◽  
Author(s):  
G. A. Sagnella ◽  
N. D. Markandu ◽  
M. G. Buckley ◽  
M. A. Miller ◽  
D. R. Singer ◽  
...  

The effects of gradual (50 mmol/day) increases in dietary sodium intake from 10 to 350 mmol/day on plasma atrial natriuretic peptide (ANP), aldosterone, and plasma renin activity (PRA) were studied in six normal subjects. With the increases in sodium intake there was a progressive increase in urinary sodium from 12.2 +/- 4.4 to 314.8 +/- 31.4 mmol/24 h; plasma ANP increased gradually from 9.9 +/- 1.1 to 23.3 +/- 2.2 pg/ml, with the increases being closely associated with the changes in cumulative sodium balance. Plasma aldosterone decreased significantly from 2,519.7 +/- 147.4 pmol/l on the 10 mmol/day to 1,393.3 +/- 125.4 pmol/l when the sodium intake was increased to 50 mmol/day and decreased further to 251.6 +/- 78.7 pmol/l by the end of the study. The changes in PRA paralleled those in plasma aldosterone with the exception of no significant change in plasma PRA within 24 h of the initial increase in sodium intake. This marked sensitivity in the responses of both the ANP and the renin-aldosterone system to small increases in sodium intake clearly points to their importance in the renal adaptations to alterations in dietary sodium intake.

1992 ◽  
Vol 262 (5) ◽  
pp. F871-F877 ◽  
Author(s):  
W. V. Vieweg ◽  
J. D. Veldhuis ◽  
R. M. Carey

To investigate the pulsatile nature of basal and stimulated renin and aldosterone secretion, we sampled blood for plasma renin activity (PRA) and plasma aldosterone concentration at 10-min intervals for 24 h in nine normal supine human male subjects after equilibration in high- and low-sodium balance states. We evaluated serial hormonal measures by a quantitative waveform-independent deconvolution technique designed to compute the number, amplitude, and mass of underlying secretory bursts and simultaneously to estimate the presence and extent of basal secretion. For both PRA and aldosterone: 1) burstlike release accounted for greater than or equal to 60% of total secretion and tonic release for less than 40%; 2) there was an 80- to 85-min interpulse interval unchanged by sodium intake; 3) sodium restriction engendered an increase in plasma hormone concentrations by increasing the amount and maximal rate of hormone secreted per burst; 4) low dietary sodium also induced increases in basal hormone secretory rates, suggesting that there may be two regulatory processes driving renin and aldosterone secretion; and 5) PRA was significantly coupled to plasma aldosterone concentration by a 0-, 10-, or 20-min aldosterone lag time in both high- and low-sodium balance. We conclude that both renin and aldosterone are released via a predominantly burstlike mode of secretion; PRA and plasma aldosterone concentrations are positively coupled by a short time lag (0-20 min); and sodium restriction achieves an increase in mean PRA and plasma aldosterone concentration by selective amplitude enhancement of individual hormone secretory bursts and by increased tonic (interburst) basal secretory rates.


1984 ◽  
Vol 247 (1) ◽  
pp. R76-R83 ◽  
Author(s):  
T. N. Thrasher ◽  
C. E. Wade ◽  
L. C. Keil ◽  
D. J. Ramsay

The regulation of sodium metabolism and the renin-angiotensin-aldosterone system was evaluated during 24 h of water, but not food, deprivation and during rehydration in the dog. Dehydration caused increases in plasma concentrations of sodium (6.0 +/- 0.7 meq/l), protein (0.8 +/- 0.1 g/dl), vasopressin (5.3 +/- 0.9 pg/ml), and renin activity (3.5 +/- 1.1 ng AI X ml-1 X 3 h-1). Plasma aldosterone was unchanged and plasma potassium fell slightly (0.2 +/- 0.1 meq/l). During dehydration, food, and thus sodium intake fell by more than 10% in 12 of 19 dogs, but urinary sodium excretion increased significantly, leading to a negative sodium balance (1.9 +/- 0.2 meq/kg). Sodium retention was observed after rehydration and sodium balance; plasma electrolytes, vasopressin, and plasma renin activity (PRA) returned turned to control levels after the 1st day of recovery. However, plasma aldosterone was slightly elevated at this time, returning to control after the 2nd day of recovery. The dehydration-induced natriuresis could not be accounted for by a fall in plasma aldosterone. However, sodium retention following rehydration could be aldosterone dependent, because additional studies showed a threefold rise in plasma levels of the hormone 1 h after drinking. The acute rise in aldosterone correlated closely (r = 0.82) with the fall in plasma sodium after drinking but not with changes in adrenocorticotrophic hormone, PRA, or plasma potassium. It is concluded that natriuresis is a homeostatic response to dehydration as a means of ameliorating the rise in body fluid osmolality.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 249 (6) ◽  
pp. F819-F826 ◽  
Author(s):  
E. Fernandez-Repollet ◽  
C. R. Silva-Netto ◽  
R. E. Colindres ◽  
C. W. Gottschalk

This study was designed to investigate the effects of bilateral renal denervation on sodium and water balance, the renin-angiotensin system, and systemic blood pressure in unrestrained conscious rats maintained on a normal- or low-sodium diet. Renal denervation was proven by chemical and functional tests. Both bilaterally denervated rats (n = 18) and sham-denervated rats (n = 15) maintained positive sodium balance while on a normal sodium intake. Both groups were in negative sodium balance for 1 day after dietary sodium restriction was instituted but were in positive sodium balance for the following 9 days. Systolic blood pressure was higher in sham-denervated (115 +/- 3 mmHg) than in denervated rats (102 +/- 3 mmHg) while on a normal diet (P less than 0.05) and remained so during sodium restriction. Plasma renin concentration (PRC) and plasma aldosterone concentration (PAC) were significantly diminished in the denervated rats during normal sodium intake (P less than 0.05). After dietary sodium restriction, PRC increased in both groups but remained significantly lower in the denervated rats (P less than 0.05). Following dietary sodium restriction, PAC also increased significantly to levels that were similar in both groups of rats. These results demonstrate that awake unrestrained growing rats can maintain positive sodium balance on a low sodium intake even in the absence of the renal nerves. However, efferent renal nerve activity influenced plasma renin activity in these animals.


1987 ◽  
Vol 252 (5) ◽  
pp. R878-R882 ◽  
Author(s):  
J. P. Granger ◽  
J. C. Burnett ◽  
J. C. Romero ◽  
T. J. Opgenorth ◽  
J. Salazar ◽  
...  

Escape from the sodium-retaining effects of aldosterone (ALDO) is thought to occur as a result of natriuretic compensatory mechanisms triggered by extracellular fluid volume expansion. The purpose of the present study was to determine whether increases in plasma levels of atrial natriuretic peptide occur during ALDO escape in conscious dogs (n = 6) maintained on a fixed sodium intake (60 meq/day). Infusion of ALDO at a rate of 15 micrograms X kg-1 X day-1 for 6 days decreased sodium excretion (UNaV) from 59.1 +/- 4.0 to 36.2 +/- 5.7 meq/day on day 1, and then UNaV gradually returned to control levels by day 5 of ALDO infusion. Net cumulative sodium balance progressively increased during ALDO infusion, reaching a peak value of 88.8 +/- 21.3 meq/day on day 5. Mean arterial pressure increased from 85 +/- 3 to 95 +/- 4 mmHg, and plasma renin activity decreased from 1.32 +/- 0.27 to 0.32 +/- 0.07 ng angiotensin (ANG) I X ml-1 X h-1 during ALDO infusion. Plasma levels of atrial natriuretic peptide averaged 67.5 +/- 8.9 pg/ml during control and increased to a peak value of 120 +/- 18 pg/ml by day 4 of ALDO infusion. Three to four days after ALDO infusion was stopped, plasma levels of atrial natriuretic peptide averaged 46 +/- 5 and 50 +/- 6 pg/ml, respectively. In summary, escape from the sodium-retaining effects of ALDO is associated with significant increases in the circulatory levels of atrial natriuretic peptide.


1971 ◽  
Vol 67 (1) ◽  
pp. 159-173
Author(s):  
A. Peytremann ◽  
R. Veyrat ◽  
A. F. Muller

ABSTRACT Variations in plasma renin activity and urinary aldosterone excretion were studied in normal subjects submitted to salt restriction and simultaneous inhibition of ACTH production with a new synthetic steroid, 6-dehydro-16-methylene hydrocortisone (STC 407). At a dose of 10 mg t. i. d. this preparation exerts an inhibitory effect on the pituitary comparable to that of 2 mg of dexamethasone. In subjects maintained on a restricted salt intake, STC 407 does not delay the establishment of an equilibrium in sodium balance. The increases in endogenous aldosterone production and in plasma renin activity are also similar to those seen in the control subjects. A possible mineralocorticoid effect of STC 407 can be excluded. Under identical experimental conditions, the administration of dexamethasone yielded results comparable to those obtained with STC 407.


1974 ◽  
Vol 46 (4) ◽  
pp. 481-488 ◽  
Author(s):  
C. S. Wilcox ◽  
M. J. Aminoff ◽  
A. B. Kurtz ◽  
J. D. H. Slater

1. The effect on plasma renin activity (PRA) of dopamine and noradrenaline infusions was studied in three patients with Shy—Drager syndrome, three patients with Parkinson's disease and normal autonomic reflexes, and three healthy volunteers. The patients with the Shy—Drager syndrome had functional evidence of a peripheral lesion of the sympathetic nervous system and subnormal PRA on a controlled sodium intake. 2. In all subjects catecholamines were infused step-wise for 4 min until a 30% rise in systolic blood pressure occurred. 3. In each subject, PRA fell after noradrenaline but rose after dopamine. The mean fractional increase in PRA after dopamine was no less in the Shy—Drager patients than in the control groups. 4. The results suggest, first, that stimulation of dopamine receptors can release renin, and secondly, that inadequate renin stores cannot explain the low PRA found in our patients with autonomic failure.


1982 ◽  
Vol 62 (4) ◽  
pp. 373-380 ◽  
Author(s):  
M. G. Nicholls ◽  
M. Tree ◽  
J. H. Livesey ◽  
R. Fraser ◽  
J. J. Morton ◽  
...  

1. Potassium was infused intravenously in an incremental fashion and the plasma aldosterone responses were measured in conscious beagle dogs at five different intakes of dietary sodium. 2. Potassium/aldosterone dose—response curves were constructed for each dietary sodium regimen. 3. The rate of increase of plasma potassium during graded potassium infusion became progressively greater with increasing sodium depletion. 4. Regression lines of plasma aldosterone on plasma potassium were progressively elevated and steepened with increasing sodium depletion. 5. The alteration of these dose-response curves could in part have been the result of chronic elevation of plasma potassium and angiotensin II, and depression of plasma sodium, with sodium deprivation. 6. By contrast, acute changes in plasma angiotensin II or sodium concentrations across incremental infusions of potassium did not explain the progressive changes in the potassium/aldosterone dose—response curves. 7. The steepest part of the plasma aldosterone response curve was in the plasma potassium range 4–6 mmol/l. 8. Maximum achieved aldosterone levels were similar to or greater than those attained during angiotensin II infusion in previous studies in beagle dogs. 9. Potassium, like angiotensin II and adrenocorticotropic hormone, becomes a more effective stimulus to aldosterone with sodium depletion, thereby facilitating the preservation of sodium homoeostasis.


1987 ◽  
Vol 73 (5) ◽  
pp. 489-495 ◽  
Author(s):  
A. M. Richards ◽  
G. Tonolo ◽  
R. Fraser ◽  
J. J. Morton ◽  
B. J. Leckie ◽  
...  

1. Diurnal changes in plasma concentrations of atrial natriuretic peptide (ANP), renin, angiotensin II, aldosterone, Cortisol and antidiuretic hormone were investigated in seven normal volunteers studied under standardized conditions of dietary sodium, posture and physical activity. After completion of the diurnal study serial measurements of these variables were continued during, and on recovery from, a 2 day period of severe sodium depletion. 2. Clear diurnal variations in plasma concentrations of renin, angiotensin II, aldosterone, Cortisol and antidiuretic hormone were observed. 3. Plasma ANP concentrations also varied significantly over 24 h. Values peaked about mid-day and a distinct trough in peptide concentrations occurred in the early evening. However, variations in plasma ANP values were of relatively small amplitude and not clearly independent of modest parallel shifts in sodium balance. 4. Changes in plasma ANP concentrations both within the diurnal study period and during sodium deprivation were closely and positively correlated with concomitant changes in cumulative sodium balance. 5. No simple parallel or reciprocal relationships between plasma concentrations of ANP, on the one hand, and concurrent plasma concentrations of other hormones or in the rate of urinary sodium excretion, on the other, were observed during the 25 h of the diurnal study.


Sign in / Sign up

Export Citation Format

Share Document