Dietary K intake regulates the response of apical K channels to adenosine in the thick ascending limb

2004 ◽  
Vol 287 (5) ◽  
pp. F954-F959 ◽  
Author(s):  
Dimin Li ◽  
Yuan Wei ◽  
Wen-Hui Wang

We used the patch-clamp technique to study the effect of adenosine on the apical 70-pS K channel in the thick ascending limb (TAL) of the rat kidney. Application of 1 μM cyclohexyladenosine (CHA), an adenosine analog, stimulated apical 70-pS K channel activity and increased the product of channel open probability and channel number ( NPo) from 0.34 to 0.7. Also, addition of CGS-21680, a specific A2a adenosine receptor agonist, mimicked the effect of CHA and increased NPo from 0.33 to 0.77. The stimulatory effect of CHA and CGS-21680 was completely blocked by H89, an inhibitor of protein kinase A (PKA), or by inhibition of adenylate cyclase with SQ-22536. This suggests that the stimulatory effect of adenosine analogs is mediated by a PKA-dependent pathway. The effect of adenosine analog was almost absent in the TAL from rats on a K-deficient (KD) diet for 7 days. Application of DDMS, an agent that inhibits cytochrome P-450 hydrolase, not only significantly increased the activity of the 70-pS K channel but also restored the stimulatory effect of CHA on the 70-pS K channel in the TAL from rats on a KD diet. Also, the effect of CHA was absent in the presence of 20-HETE. Inhibition of PKA blocked the stimulatory effect of CHA on the apical 70-pS K channel in the presence of DDMS in the TAL from rats on a KD diet. We conclude that stimulation of adenosine receptor increases the apical 70-pS K channel activity via a PKA-dependent pathway and that the effect of adenosine on the apical 70-pS K channel is suppressed by low-K intake. Moreover, the diminished response to adenosine is the result of increase in 20-HETE formation, which inhibits the cAMP-dependent pathway in the TAL from rats on a KD diet.

2007 ◽  
Vol 293 (1) ◽  
pp. F299-F305 ◽  
Author(s):  
Ruimin Gu ◽  
Jing Wang ◽  
Yunhong Zhang ◽  
Wennan Li ◽  
Ying Xu ◽  
...  

We used the patch-clamp technique to examine the effect of adenosine on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. A 50-pS inwardly rectifying K channel was detected in the basolateral membrane, and the channel activity was decreased by hyperpolarization. Application of adenosine (10 μM) increased the activity of basolateral 50 pS K channels, defined by NPo, from 0.21 to 0.41. The effect of adenosine on the 50 pS K channels was mimicked by cyclohexyladenosine (CHA), which increased channel activity by a dose-dependent manner. However, inhibition of the A1 adenosine receptor with 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) failed to block the effect of CHA. In contrast, application of 8-(3-chlorostyryl) caffeine (CSC), an A2 adenosine antagonist, abolished the stimulatory effect of CHA. The possibility that the effect of adenosine and adenosine analog on the basolateral 50 pS K channel was the result of activation of the A2 adenosine receptor was also suggested by the observation that application of CGS-21680, a selected A2A adenosine receptor agonist, increased the channel activity. Also, inhibition of PKA with N-[2-(methylamino)ethyl]-5-isoquinoline sulfonamide-2HC1 abolished the stimulatory effect of CHA on the basolateral 50 pS K channel. Moreover, addition of the membrane-permeable cAMP analog increases the activity of 50 pS K channels. We conclude that adenosine activates the 50 pS K channel in the basolateral membrane of the TAL and the stimulatory effect is mainly mediated by a PKA-dependent pathway via the A2 adenosine receptor in the TAL.


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


2002 ◽  
Vol 283 (3) ◽  
pp. F407-F414 ◽  
Author(s):  
Rui-Min Gu ◽  
Wen-Hui Wang

We have used the patch-clamp technique to study the effect of arachidonic acid (AA) on the basolateral K channels in the medullary thick ascending limb (mTAL) of rat kidney. An inwardly rectifying 50-pS K channel was identified in cell-attached and inside-out patches in the basolateral membrane of the mTAL. The channel open probability ( P o) was 0.51 at the spontaneous cell membrane potential and decreased to 0.25 by 30 mV hyperpolarization. The addition of 5 μM AA decreased channel activity, identified as NP o, from 0.58 to 0.08 in cell-attached patches. The effect of AA on the 50-pS K channel was specific because 10 μM cis-11,14,17-eicosatrienoic acid had no significant effect on channel activity. To determine whether the effect of AA was mediated by AA per se or by its metabolites, we examined the effect of AA on channel activity in the presence of indomethacin, an inhibitor of cyclooxygenase, or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), an inhibitor of cytochrome P-450 monooxygenase. Inhibition of cyclooxygenase increased channel activity from 0.54 to 0.9. However, indomethacin did not abolish the inhibitory effect of AA on the 50-pS K channel. In contrast, inhibition of cytochrome P-450 metabolism not only increased channel activity from 0.49 to 0.83 but also completely abolished the effect of AA. Moreover, addition of DDMS can reverse the inhibitory effect of AA on channel activity. The notion that the effect of AA was mediated by cytochrome P-450-dependent metabolites of AA is also supported by the observation that addition of 100 nM of 20-hydroxyeicosatetraenoic acid, a main metabolite of AA in the mTAL, can mimic the effect of AA. We conclude that AA inhibits the 50-pS K channel in the basolateral membrane of the mTAL and that the effect of AA is mainly mediated by cytochrome P-450-dependent metabolites of AA.


1996 ◽  
Vol 271 (1) ◽  
pp. C103-C111 ◽  
Author(s):  
W. H. Wang ◽  
M. Lu ◽  
S. C. Hebert

We used the patch-clamp technique to study the effect of extracellular Ca2+ (Ca2+o) on the activity of the apical 70-pS K+ channel in the isolated split-open thick ascending limb (TAL) of the rat kidney. Raising Ca2+o from 1.1 to 5 mM reversibly reduced the activity of the 70-pS K+ channel in cell-attached patches to 16 +/- 2% of the control value within 300 s. In addition, 50 microM neomycin mimicked the effect of an increase in Ca2+o on channel activity in cell-attached patches and completely inhibited channel activity. The effect of neomycin on the channel activity in cell-attached patches is an indirect effect, since addition of 50 microM neomycin on the 70-pS K+ channel in inside-out patches reduced only the apparent amplitude of the channel current without changing channel open probability. We examined further the role of protein kinase C (PKC) and the cytochrome P-450-dependent metabolites of arachidonic acid in mediating the Ca2+o -induced inhibition of channel activity. Addition of phorbol 12-myristate 13-acetate (2 microM) reversibly blocked channel activity in cell-attached patches to 4 +/- 1% of the control value, whereas 75 nM calphostin C increased the channel activity by 115 +/- 10%. Moreover, addition of 1 nM exogenous PKC reversibly and completely inhibited the 70-pS K+ channel. However, inhibition of PKC with calphostin C (75 nM) only slightly prolonged the time course of the effect of Ca2+o on channel activity (370 +/- 40 s) and failed to abolish the inhibitory effect of 5 mM Ca2+o on channel activity in cell-attached patches, indicating that PKC was not mainly responsible for the effect of Ca2+o on channel activity. In contrast, the effect of 5 mM Ca2+o on the apical 70-pS K+ channel was completely abolished when TAL tubules were first incubated in the 17-octadecynoic acid (5 microM)-containing solution, an agent that specifically blocks cytochrome P-450 monooxygenase. In conclusion, these data indicate that Ca2+o is an important regulator of the apical 70-pS K+ channel and that a cytochrome P-450-dependent metabolite of arachidonic acid is involved in mediating this inhibitory effect.


1998 ◽  
Vol 274 (5) ◽  
pp. F946-F950 ◽  
Author(s):  
Ming Lu ◽  
Xiaohong Wang ◽  
Wenhui Wang

We have previously shown that nitric oxide (NO) mediates the stimulatory effect of angiotensin II on the apical 70-pS K+ channel in the thick ascending limb (TAL) of Henle’s loop of the rat kidney (12). In the present study, we used the patch-clamp technique to examine the effects of NO on the 70-pS K+ channel. Addition of 10 μM S-nitroso- N-acetylpenicillamine (SNAP), a NO donor, increased the channel activity in cell-attached patches. In contrast, application of 100 μM N ω-nitro-l-arginine methyl ester (l-NAME), an inhibitor of nitric oxide synthase (NOS), reduced the channel activity by 75 ± 7%. The effect of l-NAME was the result of inhibiting NOS, since d-NAME, which does not block NOS activity, had no effect on the channel activity. In addition, the effect ofl-NAME was abolished in the presence of 1 mM l-arginine or by addition of 10 μM SNAP, further supporting the role of NO. Finally, the l-NAME-induced inhibition was also reversed by adding 8-bromoguanosine 3′,5′-cyclic monophosphate (8-BrcGMP). That the effect of NO is mediated by the cGMP-dependent pathway is also suggested by experiments in which inhibition of guanylate cyclase abolished the effect of SNAP. Finally, 10 μM SNAP significantly increased cGMP concentration of the medullary TAL from 12.4 fM/μg protein to 38.9 fM/μg protein, as measured with ELISA. We conclude that NO is involved in regulating the activity of the apical 70-pS K+ channel in the TAL of the rat kidney.


2011 ◽  
Vol 300 (4) ◽  
pp. F906-F913 ◽  
Author(s):  
Mingxiao Wang ◽  
Hongyu Sui ◽  
Wennan Li ◽  
Jing Wang ◽  
Yujie Liu ◽  
...  

The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A2a receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A2a receptor with CGS-21680 or inhibition of phospholipase A2 (PLA2) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA2 at serine residue 505, an indication of inhibiting PLA2 activity. In the presence of CGS-21680, inhibition of PLA2 had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA2 in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A2a receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A2a receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA2 activity and 20-HETE-induced inhibition.


1996 ◽  
Vol 108 (6) ◽  
pp. 537-547 ◽  
Author(s):  
M Lu ◽  
Y Zhu ◽  
M Balazy ◽  
K M Reddy ◽  
J R Falck ◽  
...  

We have used the patch-clamp technique to study the effect of angiotensin II (AII) on the activity of the apical 70 pS K+ channel and used Na(+)-sensitive fluorescent dye (SBFI) to investigate the effect of AII on intracellular Na+ concentration (Na+i) in the thick ascending limb (TAL) of the rat kidney. Addition of 50 pM AII reversibly reduced NPo, a product of channel open probability (Po) and channel number (N), to 40% of the control value and reduced the Na+i by 26%. The AII (50 pM)-induced decrease in channel activity defined by NPo was partially reversed by addition of 5 microM 17-octadecynoic acid (17-ODYA), an agent which blocks the cytochrome P450 monooxygenase. The notion that P450 metabolites of arachidonic acid (AA) may mediate the inhibitory effect of AII was further suggested by experiments in which addition of 10 nM of 20-hydroxyeicosatetraenoic acid (20-HETE) blocked the channel activity in cell-attached patches in the presence of 17-ODYA. We have used gas chromatography mass spectrometry (GC/MS) to measure the production of 20-HETE, a major AA metabolite of the P450-dependent pathway in the TAL of the rat. Addition of 50 pM AII increased the production of 20-HETE to 260% of the control value, indicating that 20-HETE may be involved in mediating the effect of AII (50 pM). In contrast to the inhibitory effect of 50 pM AII, addition of 50-100 nM AII increased the channel activity to 270% of the control value and elevated the Na+i by 45%. The effect of AII on the activity of the 70 pS K+ channel was also observed in the presence of 5 microM 17-ODYA and 5 microM calphostin C, an inhibitor of protein kinase C. However, addition of 100 microM NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, abolished completely the AII (50-100 nM)-induced increase in channel activity and addition of an exogenous nitric oxide (NO) donor, S-nitroso-N-acetyl-penicillamine (SNAP), increased channel activity in the presence of L-NAME. These data suggest that the stimulatory effect of AII is mediated by NO. We conclude that AII has dual effects on the activity of the apical 70 pS K+ channel. The inhibitory effect of AII is mediated by P450-dependent metabolites whereas the stimulatory effect may be mediated via NO.


2000 ◽  
Vol 278 (5) ◽  
pp. C905-C913 ◽  
Author(s):  
Hua Jun Liu ◽  
Yuan Wei ◽  
Nicholas R. Fererri ◽  
Alberto Nasjletti ◽  
Wen Hui Wang

Vasopressin and prostaglandin E2 (PGE2) are involved in regulating NaCl reabsorption in the thick ascending limb (TAL) of the rat kidney. In the present study, we used the patch-clamp technique to study the effects of vasopressin and PGE2 on the apical 70 pS K+ channel in the rat TAL. Addition of vasopressin increased the channel activity, defined as NP o, from 1.11 to 1.52 (200 pM) and 1.80 (500 pM), respectively. The effect of vasopressin can be mimicked by either forskolin (1–5 μM) or 8-bromo-cAMP/dibutyryl-cAMP (8-Br-cAMP/DBcAMP) (200–500 μM). Moreover, the effects of cAMP and vasopressin were not additive and application of 10 μM H-89 abolished the effect of vasopressin. This suggests that the effect of vasopressin is mediated by a cAMP-dependent pathway. Applying 10 nM PGE2 alone had no significant effect on the channel activity. However, PGE2 (10 nM) abolished the stimulatory effect of vasopressin. The PGE2-induced inhibition of the vasopressin effect was the result of decreasing cAMP production because addition of 200 μM 8-Br-cAMP/DBcAMP reversed the PGE2-induced inhibition. In addition to antagonizing the vasopressin effect, high concentrations of PGE2 reduced channel activity in the absence of vasopressin by 33% (500 nM) and 51% (1 μM), respectively. The inhibitory effect of high concentrations of PGE2 was not the result of decreasing cAMP production because adding the membrane-permeant cAMP analog failed to restore the channel activity. In contrast, inhibiting protein kinase C (PKC) with calphostin C (100 nM) abolished the effect of 1 μM PGE2. We conclude that PGE2 inhibits apical K+ channels by two mechanisms: 1) low concentrations of PGE2 attenuate the vasopressin-induced stimulation mainly by reducing cAMP generation, and 2) high concentrations of PGE2 inhibit the channel activity by a PKC-dependent pathway.


1997 ◽  
Vol 273 (3) ◽  
pp. F421-F429 ◽  
Author(s):  
W. Wang ◽  
M. Lu ◽  
M. Balazy ◽  
S. C. Hebert

Raising extracellular Ca2+ (Ca2+o) stimulating the Ca(2+)-sensing receptor (CaR) decreased the activity of the apical 70-pS K+ channel via a cytochrome P-450-dependent mechanism in the thick ascending limb (TAL) of the rat kidney [W. H. Wang, M. Lu, and S. C. Hebert. Am. J. Physiol. 270 (Cell Physiol. 39): C103-C111, 1996]. We have now used the patch-clamp technique and fluorescent dyes to investigate the signaling mechanism by which this effect is produced. Addition of 500 microM gadolinium (Gd3+), an agent which has been shown to activate the CaR (E. M. Brown, G. Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, A. Sun, M. A. Hediger, J. Lytton, and S. C. Hebert. Nature 366: 575-580, 1993), mimics the inhibitory effect of raising Ca2+o from 1.1 to 5 mM on channel activity. Effects of the high Ca2+o and Gd3+ were abolished by blockade of phospholipase A2 (PLA2) but not by inhibition of phospholipase C (PLC). Raising Ca2+o also increased 20-hydroxyeicosatetraenoic acid production significantly. To investigate the effect of stimulation of the CaR on intracellular Ca2+ (Ca2+i), we used the acetoxymethyl ester of fura 2 to monitor the Ca2+i. Raising Ca2+o from 1.1 to 5 mM increased the Ca2+i significantly from 50 to 150 nM. However, addition of thapsigargin failed to abolish the effect of 5 mM Ca2+o on Ca2+i. Also, application of Gd3+ only slightly increased the Ca2+i, suggesting that elevation of the Ca2+i by high Ca2+o was the result of an influx of Ca2+ rather than enhanced Ca2+ release from Ca2+ stores. That the increase in Ca2+ influx is not mainly responsible for the effect of stimulating the CaR on channel activity is further supported by experiments in which 500 microM Gd3+ inhibited the K+ channel in cell-attached patches in a Ca(2+)-free bath. Furthermore, addition of 500 microM Gd3+ or 5 mM Ca2+o decreased intracellular Na+ measured with fluorescent sodium indicator, suggesting inhibition of Na+ transport. We conclude that PLA2 is involved in the stimulation of the CaR-induced inhibition of apical K+ channels in the TAL.


1996 ◽  
Vol 271 (3) ◽  
pp. F588-F594 ◽  
Author(s):  
C. M. Macica ◽  
Y. Yang ◽  
S. C. Hebert ◽  
W. H. Wang

Arachidonic acid (AA) has been shown to inhibit the activity of the low-conductance ATP-sensitive K+ channel in the apical membrane of the cortical collecting duct [W. Wang, A. Cassola, and G. Giebisch. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F554-F559, 1992]. ROMK1, a K+ channel derived from the rat renal outer medulla, shares many biophysical properties of the native low-conductance K+ channel, which is localized to the apical membranes of the cortical collecting duct and thick ascending limb. This study was designed to determine whether the ROMK channel maintains the property of AA sensitivity of the native low-conductance K+ channel. Experiments were conducted in Xenopus oocytes injected with cRNA encoding the ROMK1 channel by use of patch-clamp techniques. We have confirmed previous reports that the cloned ROMK1 has similar channel kinetics, high open probability, and inward slope conductance as the native low-conductance K+ channel, respectively. Addition of 5 microM AA to an inside-out patch resulted in reversible inhibition of channel activity at a concentration similar to the inhibitor constant for AA on the native K+ channel. The effect of AA on channel activity was preserved in the presence of 10 microM indomethacin, a cyclooxygenase inhibitor, 4 microM cinnamyl-3,4-dihydroxycyanocinnamate, a lipoxygenase inhibitor, and 4 microM 17-octadecynoic acid, an inhibitor of cytochrome P-450 monooxygenases, thus indicating that the effect of AA was not mediated by metabolites of AA. The effect did not appear to be the result of changes in membrane fluidity, since 5 microM eicosatetraynoic acid, an AA analogue that is a potent modulator of membrane fluidity, had no effect. Furthermore, the addition of AA to the outside of the patch also had no effect on channel activity. These results indicate that, like the native low-conductance channel, AA is able to directly inhibit ROMK1 channel activity.


Sign in / Sign up

Export Citation Format

Share Document