Proton gradient-dependent renal transport of glycine: evidence for vesicle studies

1990 ◽  
Vol 258 (2) ◽  
pp. F388-F396 ◽  
Author(s):  
H. Roigaard-Petersen ◽  
H. Jessen ◽  
S. Mollerup ◽  
K. E. Jorgensen ◽  
C. Jacobsen ◽  
...  

The characteristics of renal transport of glycine by luminal membrane vesicles isolated from either proximal convoluted part (pars convoluta) or proximal straight part (pars recta) of rabbit proximal tubule were investigated. In vesicles from pars convoluta two transport systems have been characterized: a Na(+)-dependent system with intermediate affinity (half-saturation 3.64 mM) and a Na(+)-independent system that, in the presence of H+ gradient (extravesicular greater than intravesicular), can accelerate the transport of glycine into these vesicles. This is the first demonstration of H(+)-glycine cotransport across the luminal membrane of rabbit kidney proximal convoluted tubule. By contrast, in membrane vesicles from pars recta, transport of glycine was strictly dependent on Na+ and occurred via a dual transport system, namely a high-affinity (half-saturation 0.34 mM) and a low-affinity system (half-saturation 8.56 mM). The demonstration of competition between the H(+)-gradient dependent uptake of glycine, L-alanine, and L-proline, but insignificant inhibition with L-phenylalanine in vesicles from pars convoluta suggests that glycine, L-proline, and L-alanine probably share a common proton gradient-dependent transport system. In vesicles from pars recta, the Na(+)-dependent uptake of glycine was inhibited by low concentrations of L-alanine and L-phenylalanine, whereas addition of L-proline to the incubation medium did not significantly alter the uptake of glycine, suggesting that the Na(+)-dependent high-affinity system for glycine located in pars recta is shared with the high-affinity L-alanine and L-phenylalanine but not L-proline transport system.

1984 ◽  
Vol 220 (1) ◽  
pp. 15-24 ◽  
Author(s):  
U Kragh-Hansen ◽  
H Røigaard-Petersen ◽  
C Jacobsen ◽  
M I Sheikh

The transport properties for phenylalanine and glucose in luminal-membrane vesicles from outer cortex (pars convoluta) and outer medulla (pars recta) of rabbit kidney were studied by a spectrophotometric method. Uptake of phenylalanine as well as of glucose by the two types of membrane vesicles was found to be Na+-dependent, electrogenic and stereospecific. Na+-dependent transport of L-phenylalanine by outer-cortical membrane vesicles could be accounted for by one transport system (KA congruent to 1.5 mM). By contrast, in the outer-medullary preparation, L-phenylalanine transport occurred via two transport systems, namely a high-affinity system with K1A congruent to 0.33 mM and a low-affinity system with K2A congruent to 7 mM respectively. Na+-dependent uptake of D-glucose by pars convoluta and pars recta membrane vesicles could be described by single, but different, transport systems, namely a low-affinity system with KA congruent to 3.5 mM and a high-affinity system with KA congruent to 0.30 mM respectively. Attempts to calculate the stoichiometry of the different Na+/D-glucose transport systems by using Hill-type plots revealed that the ratio of the Na+/hexose co-transport probably is 1:1 in the case of pars convoluta and 2:1 in membrane vesicles from pars recta. The Na+/L-phenylalanine stoichiometry of the pars convoluta transporter probably is 1:1. Both the high-affinity and the low-affinity Na+-dependent L-phenylalanine transport system of pars recta membrane vesicles seem to operate with a 1:1 stoichiometry. The physiological importance of the arrangement of low-affinity and high-affinity transport systems along the kidney proximal tubule is discussed.


1987 ◽  
Vol 248 (2) ◽  
pp. 533-538 ◽  
Author(s):  
K E Jørgensen ◽  
M I Sheikh

The characteristics of L-alanine transport in luminal-membrane vesicles isolated either from whole cortex or from pars convoluta or pars recta of rabbit proximal tubules were studied by a rapid filtration technique and by a spectrophotometric method. Uptake of L-alanine by vesicles from whole cortex was mediated by both Na+-dependent and Na+-independent, but electrogenic, processes. The nature, mechanism and tubular localization of the transport systems were studied by the use of vesicles derived from pars convoluta and pars recta. In vesicles from pars recta transport of L-alanine was strictly dependent on Na+ and occurred via a dual transport system, namely a high-affinity (half-saturation 0.14 mM) and a low-affinity system (half-saturation 9.6 mM). The cation-dependent but Na+-unspecific transport system for L-alanine was exclusively localized to the pars convoluta, which also contained an Na+-preferring system of intermediate affinity (half saturation 2.1 mM). A closer examination of the mechanism of transport of L-alanine in vesicles from pars convoluta revealed that an H+ gradient (extravesicular greater than intravesicular) can drive the transport of L-alanine into the vesicles both in the presence and in the absence of Na+. The physiological importance of various L-alanine transporters is briefly discussed.


1984 ◽  
Vol 223 (3) ◽  
pp. 803-807 ◽  
Author(s):  
K E Jørgensen ◽  
M I Sheikh

The characteristics of D- and L-lactate transport in luminal-membrane vesicles derived from whole cortex, from the pars convoluta and from the pars recta of rabbit kidney proximal tubule were studied. It was found that uptake of both isomers in vesicles from whole cortex occurred by means of dual electrogenic transport systems, namely a low-affinity system and a high-affinity system. Uptake of both isomers in vesicles from the pars recta was strictly Na+-dependent and is mediated via a single high-affinity common transport system. Vesicles from the pars convoluta contained a cation-dependent but Na+-unspecific low-affinity common transport system for these compounds. The physiological importance of this system is briefly discussed.


1988 ◽  
Vol 254 (5) ◽  
pp. F628-F633
Author(s):  
H. Roigaard-Petersen ◽  
C. Jacobsen ◽  
M. I. Sheikh

The mechanism of renal transport of L-proline by luminal membrane vesicles prepared from proximal straight tubules (pars recta) of rabbit kidney was investigated. The following picture emerges from transport studies: an electrogenic and Na+-requiring system confined to this region of nephron exists for transport of L-proline with a high affinity (Km = 0.16 mM) and low capacity (Vmax = 3.5 nmol.mg protein-1.15 S-1). Lowering the pH from 7.5 to 5.5 increased the affinity (Km lowered from 0.16 mM at pH 7.5 to 0.08 mM at pH 5.5) without changing the maximal capacity of this system. Modification of histidyl residues of the intact luminal membrane vesicles by diethyl-pyrocarbonate (DEP) completely abolished the transient renal accumulation of L-proline. Simultaneous presence of Na+ and L-proline (10 mM) protects against DEP inactivation of renal transport of radioactive L-proline. We propose that a histidyl residue may be at or close to the active site of L-proline transporter in vesicles from the pars recta.


1984 ◽  
Vol 220 (1) ◽  
pp. 25-33 ◽  
Author(s):  
H Røigaard-Petersen ◽  
M I Sheikh

Uptake of L-proline, hydroxy-L-proline and 5-oxo-L-proline by luminal-membrane vesicles isolated either from whole cortex or from pars convoluta or pars recta of proximal tubules was studied by a spectrophotometric method. Uptake of L-proline and hydroxy-L-proline by vesicles from whole cortex was mediated by both Na+-dependent and Na+-independent, but electrogenic, processes, whereas transport of 5-oxo-L-proline in these vesicles was strictly Na+-dependent. Eadie-Hofstee analysis of saturation-kinetic data suggested the presence of multiple transport systems in luminal-membrane vesicles from whole renal cortex for the uptake of all these amino acids. Tubular localization of the transport systems was studied by the use of vesicles derived from pars convoluta and from pars recta. In pars recta transport of all three amino acids was strictly dependent on Na+ and occurred via a high-affinity system (half-saturation: 0.1-0.3 mM). Cation-dependent but Na+-unspecific transport of low affinity for L-proline and hydroxy-L-proline was exclusively localized to the pars convoluta, which also contained a Na+-preferring system of intermediate affinity (half-saturation: L-proline, 0.75 mM; hydroxy-L-proline, 1.3 mM). 5-Oxo-L-proline was transported by low-affinity and Na+-dependent systems in both pars convoluta and pars recta. Competition experiments revealed that transport systems for L-proline and hydroxy-L-proline are common, but indicated separate high-affinity transport systems for 5-oxo-L-proline and L-proline in luminal-membrane vesicles from pars recta. The physiological importance of the presence of various neutral amino acid-transport systems in different segments of the proximal tubule is discussed.


1988 ◽  
Vol 256 (1) ◽  
pp. 299-302 ◽  
Author(s):  
H Jessen ◽  
H Vorum ◽  
K E Jørgensen ◽  
M I Sheikh

The stoichiometric properties of Na+- and H+-dependent L-alanine transporters recently identified in luminal-membrane vesicles prepared from proximal convoluted tubules (pars convoluta) and proximal straight tubules (pars recta) of rabbit kidney were studied. We provide indirect evidence suggesting that one Na+ and one H+ ion are co-transported with the L-alanine molecule via Na+-dependent and H+-dependent transport systems located in vesicles from pars convoluta. Furthermore, our experimental data suggest that both the high-affinity and the low-affinity Na+-dependent L-alanine transport systems of pars recta vesicles operate with a 1:1 stoichiometry.


1987 ◽  
Vol 253 (1) ◽  
pp. F15-F20 ◽  
Author(s):  
H. Roigaard-Petersen ◽  
C. Jacobsen ◽  
M. Iqbal Sheikh

The mechanism of renal transport of L-proline by luminal-membrane vesicles isolated from proximal convoluted tubules of rabbit kidney was studied. It was found that H+ gradient (extravesicular greater than intravesicular) can drive the transport of L-proline into the vesicles both in the presence and absence of Na+. The stimulation of L-proline uptake by a pH gradient was additive with that produced by Na+. Saturation kinetic experiments revealed that pH gradient, in addition to Na+, increased the maximal uptake of L-proline by twofold. This is the first demonstration of H+-L-proline cotransport across luminal membrane of rabbit kidney proximal convoluted tubule. The physiological importance of this system is briefly discussed.


1992 ◽  
Vol 286 (1) ◽  
pp. 103-110 ◽  
Author(s):  
H Jessen ◽  
M I Sheikh

1. The mechanism of the renal transport of L-tryptophan by basolateral and luminal membrane vesicles prepared from either the pars convoluta or the pars recta of the rabbit proximal tubule was studied. The uptake of L-tryptophan by basolateral membrane vesicles from the pars convoluta was found to be an Na(+)-dependent transport event. The Na(+)-conditional influx of the amino acid was stimulated in the presence of an inwardly directed H+ gradient. Lowering the pH without an H+ gradient had no effect, indicating that L-tryptophan is co-transported with H+. 3. On the other hand, no transient accumulation of L-tryptophan was observed in the presence or absence of Na+ in basolateral membrane vesicles from the pars recta. 4. In luminal membrane vesicles from the pars recta, the transient Na(+)-dependent accumulation of L-tryptophan occurred via a dual transport system. In addition, an inwardly directed H+ gradient could drive the uphill transport of L-tryptophan into these vesicles in both the presence and the absence of an Na+ gradient. 5. By contrast, the uptake of L-tryptophan by luminal membrane vesicles from the pars convoluta was a strictly Na(+)-dependent and electrogenic transport process, mediated by a single transport component. 6. Investigation of the coupling ratio in luminal membrane vesicles suggested that 1 Na+:1 L-tryptophan are co-transported in the pars convoluta. In the pars recta, examination of the stoichiometry indicated that approx. 1 H+ and 2 Na+ (high affinity) or 1 Na+ (low affinity) are involved in the uptake of L-tryptophan.


1991 ◽  
Vol 277 (3) ◽  
pp. 891-894 ◽  
Author(s):  
H Jessen ◽  
M I Sheikh

The coupling ratio for the transport of beta-alanine and Na+, H+ and Cl- in luminal membrane vesicles isolated from proximal convoluted tubules (pars convoluta) and proximal straight tubules (pars recta) of rabbit kidney was examined. Indirect evidence indicates that 1 H+ and approx. 2 Na+, 1 Cl- (Na(+)-dependent, high-affinity) or 1 Na+ (Na(+)-dependent, low-affinity) are co-transported with beta-alanine in the pars convoluta. In pars recta, the two Na(+)-dependent transporters exhibited the same stoichiometric properties respectively as in pars convoluta.


Sign in / Sign up

Export Citation Format

Share Document