Increasing gracilis muscle interstitial potassium concentrations stimulate group III and IV afferents

1985 ◽  
Vol 58 (3) ◽  
pp. 936-941 ◽  
Author(s):  
K. J. Rybicki ◽  
T. G. Waldrop ◽  
M. P. Kaufman

Static muscular contraction reflexly increases arterial blood pressure and heart rate. One possible mechanism evoking this reflex is that potassium accumulates in the interstitial space of a working muscle to stimulate group III and IV afferents whose activation in turn evokes a pressor response. The responses of group III and IV muscle afferents to increases in interstitial potassium concentrations within the range evoked by static contraction are unknown. Thus we injected potassium chloride into the gracilis artery of anesthetized dogs while we measured both gracilis muscle interstitial potassium concentrations with potassium-selective electrodes and the impulse activity of afferents in the gracilis nerve. We found that increasing interstitial potassium concentrations to levels similar to those seen during static contraction stimulated 14 of 16 group III and 29 of 31 group IV afferents. The responses of the afferents to potassium were concentration dependent. The typical response to potassium consisted of a burst of impulses, an effect that returned to control firing rates within 26 s, even though interstitial potassium concentrations remained elevated for several minutes. Although our results suggest that potassium may play a role in initiating the reflex cardiovascular responses to static muscular contraction, the accumulation of this ion does not appear to be solely responsible for maintaining the pressor response for the duration of the contraction.

1983 ◽  
Vol 55 (1) ◽  
pp. 105-112 ◽  
Author(s):  
M. P. Kaufman ◽  
J. C. Longhurst ◽  
K. J. Rybicki ◽  
J. H. Wallach ◽  
J. H. Mitchell

Static contraction of the hindlimb muscles, induced by electrical stimulation of the ventral roots, reflexly increases arterial blood pressure and heart rate. Although stimulation of groups III and IV muscle afferents is believed to cause these reflex increases, the responses of these afferents to a level of static contraction that increases arterial pressure have not yet been determined. Therefore, in barbiturate-anesthetized cats, afferent impulses arising from endings in the gastrocnemius muscle were recorded from the L7 or S1 dorsal roots, while the cut peripheral end of the L7 ventral root was stimulated. In addition, the effects of capsaicin (100-200 micrograms) and bradykinin (25 micrograms) on the activity of the groups III and IV afferents stimulated by contraction were examined. Contraction of the gastrocnemius muscle to a level equal to or greater than that needed to cause a pressor response stimulated 12 of 19 (63%) group III afferents and 13 of 19 (68%) group IV afferents. However, the discharge patterns of the group III afferents stimulated by contraction were very different from those of the group IV fibers. No relationship was found between those fibers stimulated by contraction and those stimulated by chemicals. Our results suggest that although both groups III and IV muscle afferents contribute to the reflex cardiovascular increases evoked by static exercise, group III fibers were likely to be stimulated by the mechanical effects of muscular contraction, whereas at least some group IV fibers were likely to be stimulated by the metabolic products of muscular contraction.


1984 ◽  
Vol 247 (4) ◽  
pp. R717-R721 ◽  
Author(s):  
K. J. Rybicki ◽  
M. P. Kaufman ◽  
J. L. Kenyon ◽  
J. H. Mitchell

Static contraction of hindlimb skeletal muscle is known to increase reflexly arterial pressure and heart rate. Potassium is known to be released by the working muscle and is thought to activate the afferents responsible for the reflex cardiovascular responses to muscular contraction. However, it is not known whether potassium, at interstitial concentrations within the range observed during static contraction, is capable of stimulating these afferents. Thus we injected potassium into the gracilis artery of chloralose-anesthetized dogs while we measured interstitial potassium concentrations in the gracilis muscle with potassium-selective electrodes. In 16 dogs, we found that potassium injections, which increased interstitial potassium concentrations by 4.7 +/- 0.3 mM, increased mean arterial pressure by 18 +/- 3 mmHg and heart rate by 12 +/- 8 beats/min; cutting the obturator nerve abolished these increases. These heart rate and blood pressure responses were of short duration (20 +/- 7 s), even though interstitial potassium remained elevated for a period of several minutes. In 5 of the 16 dogs, static contraction of the gracilis muscle for 60 s increased interstitial potassium concentration by 4.3 +/- 0.3 mM. Our data are consistent with the hypothesis that potassium plays a role in causing the reflex cardiovascular responses to static muscular contraction.


1984 ◽  
Vol 57 (3) ◽  
pp. 644-650 ◽  
Author(s):  
M. P. Kaufman ◽  
K. J. Rybicki ◽  
T. G. Waldrop ◽  
G. A. Ordway

Static contraction of the hindlimb muscles of cats reflexly increases cardiovascular function, an effect that is potentiated by occlusion of the arterial supply to the working muscles. Although group III and IV afferents are known to be stimulated by and to cause the reflex cardiovascular responses to static muscular contraction, little is known about the responses of these afferents to static contraction when the arterial supply to a working muscle is occluded. We therefore recorded the impulse activity of 24 group III afferents and 30 group IV afferents with endings in the triceps surae while we statically contracted this muscle group, both when the abdominal aorta was occluded and when it was patent. A chi 2 analysis revealed that ischemia increased the responses to static contractions of a significantly higher percentage of group IV afferents than group III afferents (46.7% vs. 12.5%, respectively; P less than 0.02). In addition, two patterns of responses to ischemic contraction were observed. The first pattern was displayed by afferents (n = 10) that were stimulated by nonischemic contraction but were stimulated more by ischemic contraction. The second pattern was displayed by afferents (n = 7) that were not stimulated by nonischemic contraction but were stimulated by ischemic contraction. We conclude that afferents displaying both patterns are likely to contribute to the reflex cardiovascular responses to ischemic contraction.


1990 ◽  
Vol 259 (3) ◽  
pp. H745-H750 ◽  
Author(s):  
D. M. Rotto ◽  
J. M. Hill ◽  
H. D. Schultz ◽  
M. P. Kaufman

Cyclooxygenase products of arachidonic acid might be some of the substances that accumulate in contracting muscle to cause the reflex increases in arterial pressure and ventilation that are evoked by exercise. Recently, cyclooxygenase blockade has been shown to attenuate the reflex cardiovascular responses to static muscular contraction in anesthetized cats. Group IV afferents are believed to comprise part of the afferent arm of the reflex arc, the activation by which static muscular contraction causes these cardiovascular effects. We therefore examined the effects of indomethacin and aspirin, two cyclooxygenase-blocking agents, on the responses to static contraction of group IV afferents with endings in the triceps surae muscles of anesthetized cats. We found that indomethacin (5 mg/kg iv) decreased the responses to contraction of each of eight group IV afferents tested. Likewise, aspirin (50 mg/kg iv) decreased the responses to contraction of each of four group IV afferents tested. On the other hand, we found that arachidonic acid (2 mg) injected into the femoral artery did not increase the responses to contraction of four group IV afferents that were stimulated by this maneuver. In addition, arachidonic acid injection did not cause any of seven group IV afferents not stimulated by static contraction to become responsive to this maneuver. Nevertheless, arachidonic acid injection with the muscle at rest stimulated five of seven contraction-insensitive and two of four contraction-sensitive group IV afferents. Our data suggest that cyclooxygenase metabolites of arachidonic acid are needed for the full expression of the responses of group IV muscle afferents to static contraction.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 62 (6) ◽  
pp. 2258-2263
Author(s):  
K. W. McCoy ◽  
D. M. Rotto ◽  
M. P. Kaufman

We have examined the effect of static contraction of the hindlimb muscles on the discharge of aortic chemoreceptors in chloralose-anesthetized cats. The responses of the chemoreceptors to contraction were dependent on the arterial pressure response to this maneuver. When contraction reflexly evoked a pressor response of at least 20 mmHg, the discharge of 26 chemoreceptors was reduced from control levels by 53% (P less than 0.01). The contraction-induced inhibition of chemoreceptor discharge was prevented by phentolamine, an alpha-adrenergic antagonist that also attenuated the contraction-induced pressor response. In addition, the inhibition evoked by contraction was simulated by injection of phenylephrine and inflation of an aortic balloon, both of which evoked pressor responses. However, when contraction failed to significantly change arterial pressure, the discharge of 20 aortic chemoreceptors was not significantly changed from control levels. We conclude that the reflex pressor response to static contraction inhibits the discharge of aortic chemoreceptors. This inhibition of discharge needs to be considered when interpreting the effects of aortic barodenervation on the cardiovascular responses to exercise.


2001 ◽  
Vol 280 (5) ◽  
pp. H2153-H2161 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and α-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 μg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.


2006 ◽  
Vol 290 (3) ◽  
pp. H1214-H1219 ◽  
Author(s):  
Angela E. Kindig ◽  
Shawn G. Hayes ◽  
Ramy L. Hanna ◽  
Marc P. Kaufman

Injection into the arterial supply of skeletal muscle of pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a P2 receptor antagonist, has been shown previously to attenuate the reflex pressor responses to both static contraction and to tendon stretch. In decerebrated cats, we tested the hypothesis that PPADS attenuated the responses of groups III and IV muscle afferents to static contraction as well as to tendon stretch. We found that injection of PPADS (10 mg/kg) into the popliteal artery attenuated the responses of both group III ( n = 16 cats) and group IV afferents ( n = 14 cats) to static contraction. Specifically, static contraction before PPADS injection increased the discharge rate of the group III afferents from 0.1 ± 0.05 to 1.6 ± 0.5 impulses/s, whereas contraction after PPADS injection increased the discharge of the group III afferents from 0.2 ± 0.1 to only 1.0 ± 0.5 impulses/s ( P < 0.05). Likewise, static contraction before PPADS injection increased the discharge rate of the group IV afferents from 0.3 ± 0.1 to 1.0 ± 0.3 impulses/s, whereas contraction after PPADS injection increased the discharge of the group IV afferents from 0.2 ± 0.1 to only 0.3 ± 0.1 impulses/s ( P < 0.05). In addition, PPADS significantly attenuated the responses of group III afferents to tendon stretch but had no effect on the responses of group IV afferents. Our findings suggest that both groups III and IV afferents are responsible for evoking the purinergic component of the exercise pressor reflex, whereas only group III afferents are responsible for evoking the purinergic component of the muscle mechanoreflex that is evoked by tendon stretch.


1981 ◽  
Vol 51 (5) ◽  
pp. 1257-1260 ◽  
Author(s):  
H. Raff ◽  
S. P. Tzankoff ◽  
R. S. Fitzgerald

To determine the role of endogenous ACTH and hyperventilation in the adrenocortical response to hypoxia, pentobarbital-anesthetized dogs equipped with left adrenal venous cannulas for measurement of cortisol secretion rate (CSR) and arterial cannulas for measurement of plasma ACTH were exposed to 20 min of normoxia (group I), spontaneous ventilation, normocapnic hypoxic hypoxia (group II), controlled ventilation, normocapnic hypoxic hypoxia (group III), controlled ventilation, normocapnic carbon monoxide hypoxia (group IV), or hypoxic hypoxia with elevated carboxyhemoglobin (group V). Group I showed no change in ACTH and CSR. Groups II and III greatly increased CSR whereas only group III increased ACTH significantly. Group IV greatly increased ACTH whereas CSR increased but less than group III. Group V showed a significant increase in ACTH but no significant CSR response. In addition, 5 U of ACTh were infused in several animals from groups I, III, and IV. Exogenous ACTH caused increases in CSR that were larger in group I than groups III and IV. The data are consistent with the hypothesis that ACTH in arterial blood is not the sole controller of CSR during hypoxic stress.


2011 ◽  
Vol 301 (5) ◽  
pp. H2140-H2146 ◽  
Author(s):  
Anna K. Leal ◽  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

Cyclooxygenase metabolites stimulate or sensitize group III and IV muscle afferents, which comprise the sensory arm of the exercise pressor reflex. The thromboxane (TP) receptor binds several of these metabolites, whose concentrations in the muscle interstitium are increased by exercise under freely perfused conditions and even more so under ischemic conditions, which occur in peripheral artery disease. We showed that the exercise pressor reflex is greater in rats with simulated peripheral artery disease than in rats with freely perfused limbs. These findings prompted us to test the hypothesis that the TP receptor contributes to the exaggerated exercise pressor reflex occurring in a rat model of peripheral artery disease. We compared the cardiovascular responses to static contraction and stretch before and after femoral arterial injections of daltroban (80 μg), a TP receptor antagonist. We performed these experiments in decerebrate rats whose femoral arteries were ligated 72 h before the experiment (a model of simulated peripheral artery disease) and in control rats whose hindlimbs were freely perfused. Daltroban reduced the pressor response to static contraction in both freely perfused ( n = 6; before: Δ12 ± 2 mmHg, after: Δ6 ± 2 mmHg, P = 0.024) and 72-h-ligated rats ( n = 10; before: Δ25 ± 3 mmHg, after: Δ7 ± 4 mmHg, P = 0.001). Likewise, daltroban reduced the pressor response to stretch in the freely perfused group ( n = 9; before: Δ30 ± 3 mmHg, after: Δ17 ± 3 mmHg, P < 0.0001) and in the ligated group ( n = 11; before: Δ37 ± 5 mmHg, after: Δ23 ± 3 mmHg, P = 0.016). Intravenous injections of daltroban had no effect on the pressor response to contraction. We conclude that the TP receptor contributes to the pressor responses evoked by contraction and stretch in both freely perfused rats and rats with simulated peripheral artery disease.


2015 ◽  
Vol 113 (10) ◽  
pp. 3961-3966 ◽  
Author(s):  
Audrey J. Stone ◽  
Steven W. Copp ◽  
Jennifer L. McCord ◽  
Marc P. Kaufman

Previous evidence has shown that ligating the femoral artery for 72 h resulted in an exaggerated exercise pressor reflex. To provide electrophysiological evidence for this finding, we examined in decerebrated rats whose femoral arteries were either freely perfused or ligated for 72 h the responses of thin-fiber (i.e., groups III and IV) afferents to static contraction of the hindlimb muscles. We found that contraction increased the combined activity of group III and IV afferents in both freely perfused ( n = 29; baseline: 0.3 ± 0.1 imp/s, contraction: 0.8 ± 0.2 imp/s; P < 0.05) and ligated rats ( n = 28; baseline: 0.4 ± 0.1 imp/s, contraction: 1.4 ± 0.1 imp/s; P < 0.05). Most importantly, the contraction-induced increase in afferent activity was greater in ligated rats than it was in freely perfused rats ( P = 0.005). In addition, the responses of group III afferents to contraction in ligated rats ( n = 15; baseline 0.3 ± 0.1 imp/s, contraction 1.5 ± 0.2 imp/s) were greater ( P = 0.024) than the responses to contraction in freely perfused rats ( n = 18; baseline 0.3 ± 0.1 imp/s, contraction 0.9 ± 0.2 imp/s). Likewise, the responses of group IV afferents to contraction in ligated rats ( n = 13; baseline 0.5 ± 0.1 imp/s, contraction 1.3 ± 0.2 imp/s) were greater ( P = 0.048) than the responses of group IV afferents in freely perfused rats ( n = 11; baseline 0.3 ± 0.1 imp/s, contraction 0.6 ± 0.2 imp/s). We conclude that both group III and IV afferents contribute to the exaggeration of the exercise pressor reflex induced by femoral artery ligation.


Sign in / Sign up

Export Citation Format

Share Document