Atrial natriuretic peptide clearance receptor agonist lowers pulmonary pressure in hypoxic rats

1990 ◽  
Vol 68 (6) ◽  
pp. 2413-2418 ◽  
Author(s):  
H. Jin ◽  
Y. F. Chen ◽  
R. H. Yang ◽  
R. M. Jackson ◽  
S. Oparil

We demonstrated previously that intravenous administration of exogenous atrial natriuretic peptide (ANP) lowers mean pulmonary arterial pressure (MPAP) in hypoxia-adapted rats. To test the hypothesis that endogenous ANP may also lower MPAP in this model, C-ANP-(4-23), a ring-deleted analogue of ANP that binds to the biologically silent ANP clearance receptor (C-ANP receptor) but not to the ANP biological receptor (B-ANP receptor), was administered intravenously as a bolus injection (10 micrograms/kg) followed by an infusion (1 micrograms.kg-1.min-1 for 60 min) to rats adapted to hypoxia (10% O2) for 4 wk and to air control rats. C-ANP-(4-23) significantly lowered MPAP in hypoxic rats but not in air controls. A statistically insignificant reduction in mean systemic arterial pressure was found in both groups after C-ANP-(4-23) administration. C-ANP-(4-23) significantly (two- to threefold) increased endogenous plasma ANP levels in both groups; the increase was not significantly different between groups. Both basal and post-C-ANP-(4-23) levels of plasma ANP were greater in hypoxia-adapted animals than in air controls; the C-ANP-induced increase in plasma ANP was not significantly different between groups. These results suggest that the endogenous ANP may modulate pulmonary vascular tone in rats with hypoxic pulmonary hypertension.

1988 ◽  
Vol 65 (4) ◽  
pp. 1729-1735 ◽  
Author(s):  
H. K. Jin ◽  
R. H. Yang ◽  
R. M. Thornton ◽  
Y. F. Chen ◽  
R. Jackson ◽  
...  

To test the hypothesis that atrial natriuretic peptide (ANP) has a direct vasodilator effect on the pulmonary vasculature that is enhanced in hypoxia-induced pulmonary hypertension in the rat, we determined the effects of ANP on mean pulmonary (MPAP) and systemic arterial pressure (MSAP) in intact conscious Sprague-Dawley rats exposed to 10% O2 or room air for 4 wk. Catheters were placed in the pulmonary artery through the right jugular vein by means of a closed-chest technique. MPAP and MSAP were monitored before and after intravenous injections of graded doses of ANP. ANP produced dose-related decreases in MPAP that were greater in the hypoxic group than in air controls. There were no significant between-group differences in the systemic depressor responses to ANP or in the ANP-induced reduction in cardiac output. ANP lowered MPAP significantly in isolated perfused lungs from both hypoxia-adapted and air control rats, and this effect was significantly greater in the hypoxic than the air control lungs. These data indicate that ANP lowers pulmonary arterial pressure in rats with hypoxia-induced pulmonary hypertension, mainly by a direct vasodilator effect on the pulmonary vasculature.


Peptides ◽  
1987 ◽  
Vol 8 (2) ◽  
pp. 285-290 ◽  
Author(s):  
K. Naruse ◽  
M. Naruse ◽  
T. Honda ◽  
K. Obana ◽  
H. Sakurai ◽  
...  

1989 ◽  
Vol 66 (1) ◽  
pp. 151-160 ◽  
Author(s):  
H. K. Jin ◽  
R. H. Yang ◽  
Y. F. Chen ◽  
R. M. Thornton ◽  
R. M. Jackson ◽  
...  

Acute and chronic pulmonary and systemic hemodynamic responses to arginine vasopressin (AVP) were examined in 4-wk hypoxia-adapted and air control rats. AVP, administered intravenously as bolus injections or sustained infusions, produced major dose-dependent V1-receptor-mediated reductions in mean pulmonary arterial pressure in hypoxia-adapted rats. These effects were comparable in pentobarbital-anesthetized, thoracotomized animals and in conscious, intact rats. Chronic infusions of AVP induced a sustained reduction in mean pulmonary arterial pressure and partially prevented the development of pulmonary hypertension without changing systemic arterial pressure. AVP induced significant decreases in cardiac output in both groups; the cardiac output response was not significantly different in hypoxia-adapted and air control animals. AVP induced almost no change in MPAP in air control rats. Furthermore the systemic pressor effects of AVP were significantly blunted in hypoxia-adapted rats compared with air controls. We conclude that the pulmonary depressor and blunted systemic pressor effects of AVP observed in hypoxia-adapted rats may be related to release of a vasodilator, such as endothelium-derived relaxing factor, vasodilator prostaglandins, or atrial natriuretic peptides. Further study is needed to elucidate these mechanisms and assess the usefulness of AVP and/or its analogues in the treatment and prevention of hypoxia-induced pulmonary hypertension.


1992 ◽  
Vol 12 (2) ◽  
pp. 318-325 ◽  
Author(s):  
Kinya Tamaki ◽  
Yoshisuke Saku ◽  
Jun Ogata

The purpose of the present study was to determine effects of angiotensin (ANG) II on the cerebral circulation. We measured the pial artery pressure (PAP) and CBF in anesthetized rabbits. ANG II (5 μg/min) was infused into each carotid artery, and systemic arterial pressure was maintained constant. During infusion of ANG II, there was a significant increase in CBF and fall of PAP, with no change in the large artery resistance (LAR) and a significant decrease in the small vessel resistance (SVR). To investigate whether prostaglandin modulated the ANG II-induced increase in CBF, indomethacin was administered (10 mg/kg i.v.) in another group of animals. Indomethacin itself reduced PAP and increased LAR significantly without changing CBF or SVR. Indomethacin did not attenuate the effects of ANG II on the cerebral circulation. The CMRO2 was assessed during ANG II intracarotid infusion in another group of rabbits. CMRO2 did not change during infusion of ANG II. We also investigated effects of α-atrial natriuretic peptide (ANP) on the cerebral circulation. Infusion of ANP (1 μg/min) decreased LAR by 28% (p < 0.05) without altering SVR. Administration of ANG II after ANP tended to reduce LAR (p > 0.05), with a significant decrease in SVR. The results of the present study suggest that high doses of ANG II can produce cerebral vasodilatation, particularly of small vessels. Blood-borne ANP dilated the large arteries of the cerebral circulation selectively and neither interfered with nor reversed the ANG II-induced increase in CBF.


1987 ◽  
Vol 252 (5) ◽  
pp. H894-H899 ◽  
Author(s):  
Y. W. Chien ◽  
E. D. Frohlich ◽  
N. C. Trippodo

To examine mechanisms by which administration of atrial natriuretic peptide (ANP) decreases venous return, we compared the hemodynamic effects of ANP (0.5 microgram X min-1 X kg-1), furosemide (FU, 10 micrograms X min-1 X kg-1), and hexamethonium (HEX, 0.5 mg X min-1 X kg-1) with those of vehicle (VE) in anesthetized rats. Compared with VE, ANP reduced mean arterial pressure (106 +/- 4 vs. 92 +/- 3 mmHg; P less than 0.05), central venous pressure (0.3 +/- 0.3 vs. -0.7 +/- 0.2 mmHg; P less than 0.01), and cardiac index (215 +/- 12 vs. 174 +/- 10 ml X min-1 X kg-1; P less than 0.05) and increased calculated resistance to venous return (32 +/- 3 vs. 42 +/- 2 mmHg X ml-1 X min X g; P less than 0.01). Mean circulatory filling pressure, distribution of blood flow between splanchnic organs and skeletal muscles, and total peripheral resistance remained unchanged. FU increased urine output similar to that of ANP, yet produced no hemodynamic changes, dissociating diuresis, and decreased cardiac output. HEX lowered arterial pressure through a reduction in total peripheral resistance without altering cardiac output or resistance to venous return. The results confirm previous findings that ANP decreases cardiac output through a reduction in venous return and suggest that this results partly from increased resistance to venous return and not from venodilation or redistribution of blood flow.


Sign in / Sign up

Export Citation Format

Share Document