Cardiovascular responses to lower body negative pressure in trained and untrained older men

1992 ◽  
Vol 73 (6) ◽  
pp. 2693-2700 ◽  
Author(s):  
S. Fortney ◽  
C. Tankersley ◽  
J. T. Lightfoot ◽  
D. Drinkwater ◽  
J. Clulow ◽  
...  

To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59–73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.

2011 ◽  
Vol 36 (3) ◽  
pp. 376-381 ◽  
Author(s):  
Charlotte W. Usselman ◽  
Louis Mattar ◽  
Jasna Twynstra ◽  
Ian Welch ◽  
J. Kevin Shoemaker

The objective of this study was to determine whether a plane of urethane–α-chloralose anaesthesia that suppresses motor reflexes would affect baroreflex cardiovascular control relative to a plane of anaesthesia that leaves motor reflexes intact. Adult male Sprague–Dawley rats were anaesthetized to either a light (motor reflexes intact) or deep (motor reflexes suppressed) plane of anaesthesia. Animals were exposed to graded (–2 to –10 mm Hg) lower body negative pressure while heart rate, vascular resistance, and mean arterial pressure were assessed. No between-group differences were observed in baseline hemodynamics. Graded lower body negative pressure progressively increased heart rate (p < 0.01) and vascular resistance (p < 0.001) and reduced mean arterial pressure (p < 0.001) similarly in light and deep planes of anaesthesia. Therefore, the deep plane of anaesthesia was not associated with a degradation of the autonomic response to baroreceptor unloading beyond that observed at the light plane. These data support the use of urethane–α-chloralose anaesthesia in studies examining reflex cardiovascular control concomitant with some degree of noxious stimulation.


1998 ◽  
Vol 84 (2) ◽  
pp. 454-458 ◽  
Author(s):  
John R. Halliwill ◽  
Lori A. Lawler ◽  
Tamara J. Eickhoff ◽  
Michael J. Joyner ◽  
Sharon L. Mulvagh

Halliwill, John R., Lori A. Lawler, Tamara J. Eickhoff, Michael J. Joyner, and Sharon L. Mulvagh. Reflex responses to regional venous pooling during lower body negative pressure in humans. J. Appl. Physiol. 84(2): 454–458, 1998.—Lower body negative pressure is frequently used to simulate orthostasis. Prior data suggest that venous pooling in abdominal or pelvic regions may have major hemodynamic consequences. Therefore, we developed a simple paradigm for assessing regional contributions to venous pooling during lower body negative pressure. Sixteen healthy men and women underwent graded lower body negative pressure protocols to 60 mmHg while wearing medical antishock trousers to prevent venous pooling under three randomized conditions: 1) no trouser inflation (control), 2) only the trouser legs inflated, and 3) the trouser legs and abdominopelvic region inflated. Without trouser inflation, heart rate increased 28 ± 4 beats/min, mean arterial pressure fell −3 ± 2 mmHg, and forearm vascular resistance increased 51 ± 9 units at 60 mmHg lower body negative pressure. With inflation of either the trouser legs or the trouser legs and abdominopelvic region, heart rate and mean arterial pressure did not change during lower body negative pressure. By contrast, although the forearm vasoconstrictor response to lower body negative pressure was attenuated by inflation of the trouser legs (Δforearm vascular resistance 33 ± 10 units, P < 0.05 vs. control), attenuation was greater with the inflation of the trouser legs and abdominopelvic region (Δforearm vascular resistance 16 ± 5 units, P < 0.05 vs. control and trouser legs-only inflation). Thus the hemodynamic consequences of pooling in the abdominal and pelvic regions during lower body negative pressure appear to be less than in the legs in healthy individuals.


1994 ◽  
Vol 77 (5) ◽  
pp. 2134-2139 ◽  
Author(s):  
C. G. Crandall ◽  
K. A. Engelke ◽  
V. A. Convertino ◽  
P. B. Raven

To determine the effects of simulated microgravity on aortic baroreflex control of heart rate, we exposed seven male subjects (mean age 38 +/- 3 yr) to 15 days of bed rest in the 6 degrees head-down position. The sensitivity of the aortic-cardiac baroreflex was determined during a steady-state phenylephrine-induced increase in mean arterial pressure combined with lower body negative pressure to counteract central venous pressure increases and neck pressure to offset the increased carotid sinus transmural pressure. The aortic-cardiac baroreflex gain was assessed by determining the ratio of the change in heart rate to the change in mean arterial pressure between baseline conditions and aortic baroreceptor-isolated conditions (i.e., phenylephrine + lower body negative pressure + neck pressure stage). Fifteen days of head-down tilt increased the gain of the aortic-cardiac baroreflex (from 0.45 +/- 0.07 to 0.84 +/- 0.18 beats.min-1.mmHg-1; P = 0.03). Reductions in blood volume and/or maximal aerobic capacity may represent the underlying mechanism(s) responsible for increased aortic baroreflex responsiveness after exposure to a ground-based analogue of microgravity.


2017 ◽  
Vol 312 (3) ◽  
pp. R273-R280 ◽  
Author(s):  
Daniel Gagnon ◽  
Steven A. Romero ◽  
Hai Ngo ◽  
Paula Y. S. Poh ◽  
Craig G. Crandall

Heat stress profoundly impairs tolerance to central hypovolemia in humans via a number of mechanisms including heat-induced hypovolemia. However, heat stress also elevates plasma osmolality; the effects of which on tolerance to central hypovolemia remain unknown. This study examined the effect of plasma hyperosmolality on tolerance to central hypovolemia in heat-stressed humans. With the use of a counterbalanced and crossover design, 12 subjects (1 female) received intravenous infusion of either 0.9% iso-osmotic (ISO) or 3.0% hyperosmotic (HYPER) saline. Subjects were subsequently heated until core temperature increased ~1.4°C, after which all subjects underwent progressive lower-body negative pressure (LBNP) to presyncope. Plasma hyperosmolality improved LBNP tolerance (ISO: 288 ± 193 vs. HYPER: 382 ± 145 mmHg × min, P = 0.04). However, no differences in mean arterial pressure ( P = 0.10), heart rate ( P = 0.09), or muscle sympathetic nerve activity ( P = 0.60, n = 6) were observed between conditions. When individual data were assessed, LBNP tolerance improved ≥25% in eight subjects but remained unchanged in the remaining four subjects. In subjects who exhibited improved LBNP tolerance, plasma hyperosmolality resulted in elevated mean arterial pressure (ISO: 62 ± 10 vs. HYPER: 72 ± 9 mmHg, P < 0.01) and a greater increase in heart rate (ISO: +12 ± 24 vs. HYPER: +23 ± 17 beats/min, P = 0.05) before presyncope. No differences in these variables were observed between conditions in subjects that did not improve LBNP tolerance (all P ≥ 0.55). These results suggest that plasma hyperosmolality improves tolerance to central hypovolemia during heat stress in most, but not all, individuals.


1989 ◽  
Vol 21 (Supplement) ◽  
pp. S42
Author(s):  
S. Fortney ◽  
C. Tankersley ◽  
J. T. Lightfoot ◽  
J. Fleg ◽  
G. Gerstenblith ◽  
...  

1988 ◽  
Vol 65 (4) ◽  
pp. 1752-1756 ◽  
Author(s):  
M. A. Frey ◽  
G. W. Hoffler

Responses of 21 women and 29 men (29-56 yr of age) to -50 Torr lower body negative pressure (LBNP) were examined for differences due to sex or age. Responses to LBNP were normal, including fluid shift from thorax to lower body, increased heart rate and peripheral resistance, and decreased stroke volume, cardiac output, and Heather index of ventricular function. Mean arterial blood pressure did not change. Comparison of responses of the women to responses of an age-matched subset of the men (n = 26) indicated the men had larger relative increases in calf circumference and greater increases in peripheral resistance during LBNP than the women, whereas the women experienced greater increases in thoracic impedance and heart rate. Analyses of responses of the 29 men for age-related differences indicated older subjects had greater increases in peripheral resistance and less heart rate elevation in response to LBNP (P less than 0.05 for all differences, except sex-related heart rate difference, where P less than 0.10). Based on these data and the data of other investigators, we hypothesize the age-related circulatory differences in response to LBNP are due to a reduction in vagal response and a switch to predominant sympathetic nervous system influence in older men. We cannot exclude the possibility that diminished responsiveness in the afferent arm of the baroreceptor reflex also plays a role in the attenuated heart rate response of older men to LBNP.


1980 ◽  
Vol 21 (Supplement) ◽  
pp. S42
Author(s):  
S. Fortney ◽  
C. Tankersley ◽  
J. T. Lightfoot ◽  
J. Fleg ◽  
G. Gerstenblith ◽  
...  

1989 ◽  
Vol 67 (2) ◽  
pp. 894-901 ◽  
Author(s):  
J. T. Lightfoot ◽  
R. P. Claytor ◽  
D. J. Torok ◽  
T. W. Journell ◽  
S. M. Fortney

Based mostly on cross-sectional data, it has been suggested that aerobic training may decrease lower body negative pressure (LBNP) tolerance through a hypothesized attenuation in both high- and low-pressure baroreflex gain. An experimental group (EXP) of eight male subjects [22.1 +/- 1.4 (SD) yr] underwent a 10-wk treadmill and cycle ergometer training program, which resulted in a 21% increase in maximal O2 uptake (VO2 max), 45.7 +/- 1.5 vs. 55.2 +/- 1.7 (SE) ml.kg-1.min-1; P less than 0.05]. A control group, (CON; n = 7; 27.3 +/- 5.7 yr), which did not undergo training, had no significant changes in VO2 max (49.4 +/- 3.3 vs. 48.8 +/- 3.2 ml.kg-1.min-1). Before and after training the EXP and CON groups participated in LBNP tolerance tests (terminated at presyncope) and neck pressure-suction testing (to describe the carotid sinus-heart rate baroreflex). LBNP tolerance, as defined by three different indexes, and carotid sinus-heart rate baroreflex gain were not altered in either group after training. Furthermore, there were no changes in LBNP heart rate, blood pressure, leg circumference, forearm blood flow, or forearm vascular resistance responses at any level of LBNP challenge after training. In conclusion, 10 wk of aerobic training did not change LBNP tolerance or alter the reflex cardiovascular compensatory mechanisms activated during LBNP.


2001 ◽  
Vol 86 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ichiro Hidaka ◽  
Shin-Ichi Ando ◽  
Hideaki Shigematsu ◽  
Koji Sakai ◽  
Soko Setoguchi ◽  
...  

By injecting noise into the carotid sinus baroreceptors, we previously showed that heart rate (HR) responses to weak oscillatory tilt were enhanced via a mechanism known as “stochastic resonance.” It remains unclear, however, whether the same responses would be observed when using oscillatory lower body negative pressure (LBNP), which would unload the cardiopulmonary baroreceptors with physically negligible effects on the arterial system. Also, the vasomotor sympathetic activity directly controlling peripheral resistance against hypotensive stimuli was not observed. We therefore investigated the effects of weak (0 to approximately −10 mmHg) oscillatory (0.03 Hz) LBNP on HR and muscle sympathetic nerve activity (MSNA) while adding incremental noise to the carotid sinus baroreceptors via a pneumatic neck chamber. The signal-to-noise ratio of HR, cardiac interbeat interval, and total MSNA were all significantly improved by increasing noise intensity, while there was no significant change in the arterial blood pressure in synchronized with the oscillatory LBNP. We conclude that the stochastic resonance, affecting both HR and MSNA, results from the interaction of noise with the signal in the brain stem, where the neuronal inputs from the arterial and cardiopulmonary baroreceptors first come together in the nucleus tractus solitarius. Also, these results indicate that the noise could induce functional improvement in human blood pressure regulatory system in overcoming given hypotensive stimuli.


Sign in / Sign up

Export Citation Format

Share Document