scholarly journals Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity

2014 ◽  
Vol 116 (9) ◽  
pp. 1189-1196 ◽  
Author(s):  
Nia C. S. Lewis ◽  
Laura Messinger ◽  
Brad Monteleone ◽  
Philip N. Ainslie

We examined 1) whether global cerebral blood flow (CBF) would increase across a 6-h bout of normobaric poikilocapnic hypoxia and be mediated by a larger increase in blood flow in the vertebral artery (VA) than in the internal carotid artery (ICA); and 2) whether additional increases in global CBF would be evident following an α1-adrenergic blockade via further dilation of the ICA and VA. In 11 young normotensive individuals, ultrasound measures of ICA and VA flow were obtained in normoxia (baseline) and following 60, 210, and 330 min of hypoxia (FiO2 = 0.11). Ninety minutes prior to final assessment, participants received an α1-adrenoreceptor blocker (prazosin, 1 mg/20 kg body mass) or placebo. Compared with baseline, following 60, 220, and 330 min of hypoxia, global CBF [(ICAFlow + VAFlow) ∗ 2] increased by 160 ± 52 ml/min (+28%; P = 0.05), 134 ± 23 ml/min (+23%; P = 0.02), and 113 ± 51 (+19%; P = 0.27), respectively. Compared with baseline, ICAFlow increased by 23% following 60 min of hypoxia ( P = 0.06), after which it progressively declined. The percentage increase in VA flow was consistently larger than ICA flow during hypoxia by ∼20% ( P = 0.002). Compared with baseline, ICA and VA diameters increased during hypoxia by ∼9% and ∼12%, respectively ( P ≤ 0.05), and were correlated with reductions in SaO2. Flow and diameters were unaltered following α1 blockade ( P ≥ 0.10). In conclusion, elevations in global CBF during acute hypoxia are partly mediated via greater increases in VA flow compared with ICA flow; this regional difference was unaltered following α1 blockade, indicating that a heightened sympathetic nerve activity with hypoxia does not constrain further dilation of larger extracranial blood vessels.

2016 ◽  
Vol 310 (11) ◽  
pp. H1541-H1548 ◽  
Author(s):  
Igor A. Fernandes ◽  
João D. Mattos ◽  
Monique O. Campos ◽  
Alessandro C. Machado ◽  
Marcos P. Rocha ◽  
...  

Handgrip-induced increases in blood flow through the contralateral artery that supplies the cortical representation of the arm have been hypothesized as a consequence of neurovascular coupling and a resultant metabolic attenuation of sympathetic cerebral vasoconstriction. In contrast, sympathetic restraint, in theory, inhibits changes in perfusion of the cerebral ipsilateral blood vessels. To confirm whether sympathetic nerve activity modulates cerebral blood flow distribution during static handgrip (SHG) exercise, beat-to-beat contra- and ipsilateral internal carotid artery blood flow (ICA; Doppler) and mean arterial pressure (MAP; Finometer) were simultaneously assessed in nine healthy men (27 ± 5 yr), both at rest and during a 2-min SHG bout (30% maximal voluntary contraction), under two experimental conditions: 1) control and 2) α1-adrenergic receptor blockade. End-tidal carbon dioxide (rebreathing system) was clamped throughout the study. SHG induced increases in MAP (+31.4 ± 10.7 mmHg, P < 0.05) and contralateral ICA blood flow (+80.9 ± 62.5 ml/min, P < 0.05), while no changes were observed in the ipsilateral vessel (−9.8 ± 39.3 ml/min, P > 0.05). The reduction in ipsilateral ICA vascular conductance (VC) was greater compared with contralateral ICA (contralateral: −0.8 ± 0.8 vs. ipsilateral: −2.6 ± 1.3 ml·min−1·mmHg−1, P < 0.05). Prazosin was effective to induce α1-blockade since phenylephrine-induced increases in MAP were greatly reduced ( P < 0.05). Under α1-adrenergic receptor blockade, SHG evoked smaller MAP responses (+19.4 ± 9.2, P < 0.05) but similar increases in ICAs blood flow (contralateral: +58.4 ± 21.5 vs. ipsilateral: +54.3 ± 46.2 ml/min, P > 0.05) and decreases in VC (contralateral: −0.4 ± 0.7 vs. ipsilateral: −0.4 ± 1.0 ml·min−1·mmHg−1, P > 0.05). These findings indicate a role of sympathetic nerve activity in the regulation of cerebral blood flow distribution during SHG.


2010 ◽  
Vol 108 (5) ◽  
pp. 1234-1240 ◽  
Author(s):  
Raman Moradkhan ◽  
Brett Spitnale ◽  
Patrick McQuillan ◽  
Cynthia Hogeman ◽  
Kristen S. Gray ◽  
...  

Obstructive sleep apnea (OSA) is associated with increased sympathetic nerve activity, endothelial dysfunction, and premature cardiovascular disease. To determine whether hypoxia is associated with impaired skeletal muscle vasodilation, we compared femoral artery blood flow (ultrasound) and muscle sympathetic nerve activity (peroneal microneurography) during exposure to acute systemic hypoxia (fraction of inspired oxygen 0.1) in awake patients with OSA ( n = 10) and controls ( n = 8). To assess the role of elevated sympathetic nerve activity, in a separate group of patients with OSA ( n = 10) and controls ( n = 10) we measured brachial artery blood flow during hypoxia before and after regional α-adrenergic block with phentolamine. Despite elevated sympathetic activity, in OSA the vascular responses to hypoxia in the leg did not differ significantly from those in controls [ P = not significant (NS)]. Following regional phentolamine, in both groups the hypoxia-induced increase in brachial blood flow was markedly enhanced (OSA pre vs. post, 84 ± 13 vs. 201 ± 34 ml/min, P < 0.002; controls pre vs. post 62 ± 8 vs. 140 ± 26 ml/min, P < 0.01). At end hypoxia after phentolamine, the increase of brachial blood flow above baseline was similar (OSA vs. controls +61 ± 16 vs. +48 ± 6%; P = NS). We conclude that despite high sympathetic vasoconstrictor tone and prominent sympathetic responses to acute hypoxia, hypoxia-induced limb vasodilation is preserved in OSA.


2007 ◽  
Vol 102 (3) ◽  
pp. 870-877 ◽  
Author(s):  
Jurgen A. H. R. Claassen ◽  
Rong Zhang ◽  
Qi Fu ◽  
Sarah Witkowski ◽  
Benjamin D. Levine

Clinical transcranial Doppler assessment of cerebral vasomotor reactivity (CVMR) uses linear regression of cerebral blood flow velocity (CBFV) vs. end-tidal CO2 (PetCO2) under steady-state conditions. However, the cerebral blood flow (CBF)-PetCO2 relationship is nonlinear, even for moderate changes in CO2. Moreover, CBF is increased by increases in arterial blood pressure (ABP) during hypercapnia. We used a modified rebreathing protocol to estimate CVMR during transient breath-by-breath changes in CBFV and PetCO2. Ten healthy subjects (6 men) performed 15 s of hyperventilation followed by 5 min of rebreathing, with supplemental O2 to maintain arterial oxygen saturation constant. To minimize effects of changes in ABP on CVMR estimation, cerebrovascular conductance index (CVCi) was calculated. CBFV-PetCO2 and CVCi-PetCO2 relationships were quantified by both linear and nonlinear logistic regression. In three subjects, muscle sympathetic nerve activity was recorded. From hyperventilation to rebreathing, robust changes occurred in PetCO2 (20–61 Torr), CBFV (−44 to +104% of baseline), CVCi (−39 to +64%), and ABP (−19 to +23%) (all P < 0.01). Muscle sympathetic nerve activity increased by 446% during hypercapnia. The linear regression slope of CVCi vs. PetCO2 was less steep than that of CBFV (3 vs. 5%/Torr; P = 0.01). Logistic regression of CBF-PetCO2 ( r2 = 0.97) and CVCi-PetCO2 ( r2 = 0.93) was superior to linear regression ( r2 = 0.91, r2 = 0.85; P = 0.01). CVMR was maximal (6–8%/Torr) for PetCO2 of 40–50 Torr. In conclusion, CBFV and CVCi responses to transient changes in PetCO2 can be described by a nonlinear logistic function, indicating that CVMR estimation varies within the range from hypocapnia to hypercapnia. Furthermore, quantification of the CVCi-PetCO2 relationship may minimize the effects of changes in ABP on the estimation of CVMR. The method developed provides insight into CVMR under transient breath-by-breath changes in CO2.


2004 ◽  
Vol 557 (1) ◽  
pp. 261-271 ◽  
Author(s):  
Kenju Miki ◽  
Michiyo Oda ◽  
Nozomi Kamijyo ◽  
Kazumi Kawahara ◽  
Misa Yoshimoto

2013 ◽  
Vol 304 (11) ◽  
pp. R959-R965 ◽  
Author(s):  
Can Ozan Tan ◽  
Yu-Chieh Tzeng ◽  
Jason W. Hamner ◽  
Renaud Tamisier ◽  
J. Andrew Taylor

Resting vascular sympathetic outflow is significantly increased during and beyond exposure to acute hypoxia without a parallel increase in either resistance or pressure. This uncoupling may indicate a reduction in the ability of sympathetic outflow to effect vascular responses (sympathetic transduction). However, the effect of hypoxia on sympathetic transduction has not been explored. We hypothesized that transduction would either remain unchanged or be reduced by isocapnic hypoxia. In 11 young healthy individuals, we measured beat-by-beat pressure, multiunit sympathetic nerve activity, and popliteal blood flow velocity at rest and during isometric handgrip exercise to fatigue, before and during isocapnic hypoxia (∼80% SpO2), and derived sympathetic transduction for each subject via a transfer function that reflects Poiseuille's law of flow. During hypoxia, heart rate and sympathetic nerve activity increased, whereas pressure and flow remained unchanged. Both normoxic and hypoxic exercise elicited significant increases in heart rate, pressure, and sympathetic activity, although sympathetic responses to hypoxic exercise were blunted. Hypoxia slightly increased the gain relation between pressure and flow (0.062 ± 0.006 vs. 0.074 ± 0.004 cm·s−1·mmHg−1; P = 0.04), but markedly increased sympathetic transduction (−0.024 ± 0.005 vs. −0.042 ± 0.007 cm·s−1·spike−1; P < 0.01). The pressor response to isometric handgrip was similar during normoxic and hypoxic exercise due to the balance of interactions among the tachycardia, sympathoexcitation, and transduction. This indicates that the ability of sympathetic activity to affect vasoconstriction is enhanced during brief exposure to isocapnic hypoxia, and this appears to offset the potent vasodilatory stimulus of hypoxia.


Sign in / Sign up

Export Citation Format

Share Document