Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats

Author(s):  
Raphael Rodrigues Perim ◽  
Michael D. Sunshine ◽  
Joseph F. Welch ◽  
Juliet Santiago ◽  
Ashley Holland ◽  
...  

Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Further, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH vs. 2 weeks of dAIH preconditioning on spontaneous and evoked responses recorded in anesthetized, paralyzed (with pancuronium bromide) and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at C2 delivered prior to- and 60 min post-AIH (or an equivalent time in controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100 to 700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (~60% from baseline) was observed after a single exposure to moderate AIH (3 x 5 min; 5 min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.

1999 ◽  
Vol 82 (3) ◽  
pp. 1224-1232 ◽  
Author(s):  
Mark C. Bellingham

Intracellular recordings from 65 phrenic motoneurons (PMNs) in the C5 segment and recordings of C5 phrenic nerve activity were made in 27 pentobarbitone-anesthetized, paralyzed, and artificially ventilated adult cats. Inhibition of phrenic nerve activity and PMN membrane potential hyperpolarization (48/55 PMNs tested) was seen after stimulation of the internal intercostal nerve (IIN) at a mean latency to onset of 10.3 ± 2.7 ms. Reversal of IIN-evoked hyperpolarization ( n = 14) by injection of negative current or diffusion of chloride ions occurred in six cases, and the hyperpolarization was reduced in seven others. Stimulation of the IIN thus activates chloride-dependent inhibitory synaptic inputs to most PMNs. The inhibitory phrenic nerve response to IIN stimulation was reduced by ipsilateral transection of the lateral white matter at the C3 level and was converted to an excitatory response by complete ipsilateral cord hemisection at the same level. After complete ipsilateral hemisection of the spinal cord at C3 level, stimulation of the IIN evoked both excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) in PMNs ( n = 10). It was concluded that IIN stimulation can evoke both excitatory and inhibitory responses in PMNs using purely spinal circuitry, but that excitatory responses are normally suppressed by a descending pathway in intact animals. Fifteen PMNs were tested for possible presynaptic convergence of inputs in these reflex pathways, using test and conditioning stimuli. Significant enhancement (>20%) of IPSPs were seen in seven of eight IIN-evoked responses using pericruciate sensorimotor cortex (SMC) conditioning stimuli, but only one of five IIN-evoked responses were enhanced by superior laryngeal nerve (SLN) conditioning stimuli. The IIN-evoked IPSP was enhanced in one of two motoneurons by stimulation of the contralateral phrenic nerve. It was concluded that presynaptic interneurons were shared by the IIN and SMC pathways, but uncommonly by other pathways. These results indicate that PMNs receive inhibitory synaptic inputs from ascending thoracocervical pathways and from spinal interneurons. These inhibitory reflex pathways activated by afferent inputs from the chest wall may play a significant role in the control of PMN discharge, in parallel with disfacilitation following reduced activity in bulbospinal neurons projecting to PMNs.


1993 ◽  
Vol 70 (4) ◽  
pp. 1307-1315 ◽  
Author(s):  
S. Klages ◽  
M. C. Bellingham ◽  
D. W. Richter

1. Intracellular recordings were made from stage 2 expiratory bulbospinal neurons (E2Ns) in the caudal part of the ventral respiratory group in pentobarbitone-anesthetized cats, to characterize changes in neuronal input resistance (Rn) and synaptic inhibition occurring at the time of the expiratory-inspiratory phase transition of the respiratory cycle. 2. Rn was maximal between 30-90% of stage 2 expiration, but decreased significantly during the last 10% of stage 2 expiration. Mean normalized Rn for 60-90% of stage 2 expiration was 0.9 +/- 0.02, while mean Rn during the last 10% of stage 2 expiration was 0.68 +/- 0.09 (n = 8). This decrease in Rn began 200-300 ms before rapid hyperpolarization of E2N membrane potential and onset of phrenic nerve activity. 3. Under conditions of strong central respiratory drive, constant injection of positive current into E2Ns sometimes revealed a transient membrane hyperpolarization that straddled the expiratory-inspiratory phase transition. During this transient event, Rn was markedly reduced. 4. Intracellular injection of Cl- or NO3- ions into E2Ns produced reversal of chloride-dependent inhibitory synaptic potentials (IPSPs). Comparison of averages of membrane potential pattern over the whole respiratory cycle during control conditions and IPSP reversal revealed several periods of synaptic inhibition: 1) weak but progressively increasing synaptic inhibition during the second half of stage 2 expiration, 2) strong transient synaptic inhibition beginning 200-300 ms before the onset of phrenic nerve activity and ending shortly after the onset of phrenic nerve activity, and 3) strong but progressively decreasing synaptic inhibition throughout inspiration.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 51 (3) ◽  
pp. 732-738 ◽  
Author(s):  
J. F. Ledlie ◽  
S. G. Kelsen ◽  
N. S. Cherniack ◽  
A. P. Fishman

In the spontaneously breathing animal, respiratory responses to chemical stimuli are influenced by phasic proprioceptive inputs from the thorax. We have compared the effects of hypercapnia and hypoxia on the level and timing of phrenic nerve activity while these phasic afferent signals were absent. Progressive hyperoxic hypercapnia and isocapnic hypoxia were produced in anesthetized paralyzed dogs by allowing 3–5 min of apnea to follow mechanical ventilation with 100% O2 or 35% O2 in N2, respectively; during hypoxia, isocapnia was maintained by intravenous infusion of tris(hydroxymethyl)aminomethane buffer. The peak height (P) of nerve bursts, inspiratory time (TI), and expiratory time (TE) were measured from the phrenic neurogram. With the vagi intact or severed, hypoxia decreased TI, whereas hypercapnia did not; both stimuli decreased TE. At the same minute phrenic activity (P x frequency), P, TI, and TE were all less during hypoxia than during hypercapnia. The decreases in TI and TE with hypoxia were significantly less after carotid sinus denervation. The results indicate that the patterns of phrenic nerve activity in response to hypoxia and hypercapnia are different: hypoxia has a greater effect on respiratory timing, whereas hypercapnia has a greater effect on peak phrenic nerve activity. The effect of hypoxia on respiratory timing is largely mediated by the peripheral chemoreceptors.


2021 ◽  
Vol 184 ◽  
pp. 108405
Author(s):  
Omar Ashraf ◽  
Trong Huynh ◽  
Benton S. Purnell ◽  
Madhuvika Murugan ◽  
Denise E. Fedele ◽  
...  

1982 ◽  
Vol 116 (4) ◽  
pp. 351-362 ◽  
Author(s):  
E. N. BRUCE ◽  
C. VON. EULER ◽  
J. R. ROMANIUK ◽  
S. M. YAMASHIRO

Sign in / Sign up

Export Citation Format

Share Document