scholarly journals ROLE OF CAROTID BODIES IN CHRONIC INTERMITTENT HYPOXIA‐EVOKED AUGMENTED LTF OF PHRENIC NERVE ACTIVITY

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ying‐Jie Peng ◽  
Nanduri R Prabhakar
Author(s):  
Raphael Rodrigues Perim ◽  
Michael D. Sunshine ◽  
Joseph F. Welch ◽  
Juliet Santiago ◽  
Ashley Holland ◽  
...  

Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Further, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH vs. 2 weeks of dAIH preconditioning on spontaneous and evoked responses recorded in anesthetized, paralyzed (with pancuronium bromide) and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at C2 delivered prior to- and 60 min post-AIH (or an equivalent time in controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100 to 700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (~60% from baseline) was observed after a single exposure to moderate AIH (3 x 5 min; 5 min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.


1979 ◽  
Vol 47 (5) ◽  
pp. 1105-1111 ◽  
Author(s):  
E. E. Lawson ◽  
T. G. Waldrop ◽  
F. L. Eldridge

To investigate the physiological role of opiate receptors and opiatelike neurotransmitters, which are present in brain-stem respiratory centers, we administered naloxone to 10 cats by intravenous injection. These animals were vagotomized, paralyzed, and servo-ventilated to maintain constant end-tidal CO2; in addition, their carotid sinus nerves were sectioned bilaterally. Respiratory output was assessed by integration of phrenic nerve activity. Control saline infusions had no effect on respiratory output. However, administration of naloxone (0.4 mg/kg) caused phrenic minute output to increase significantly in each of five anesthetized cerebrate cats (control 7,272 +/- 1,615 U/min; 30 min postnaloxone 12,920 +/- 3,857 U/min; P less than 0.05) and five unanesthetized decerebrate cats (control 10,368 +/- 1,222 U/min; naloxone 14,648 +/- 3,225 U/min; P less than 0.05). In addition to the effect on phrenic minute output, naloxone infusion resulted in an increase of the inspiratory rate of rise of phrenic nerve activity in each cat. There was no change in the ratio of inspiratory duration to total respiratory period (TI/Ttot). Because naloxone is a specific opiate antagonist, we suggest that endogenous opiatelike neurotransmitters (endorphins) may modulate central inspiratory drive.


2006 ◽  
Vol 101 (2) ◽  
pp. 521-530 ◽  
Author(s):  
Hakan S. Orer ◽  
Gerard L. Gebber ◽  
Susan M. Barman

In an effort to characterize the role of the medullary lateral tegmental field (LTF) in regulating respiration, we tested the effects of selective blockade of excitatory (EAA) and inhibitory amino acid (IAA) receptors in this region on phrenic nerve activity (PNA) of vagus-intact and vagotomized cats anesthetized with dial-urethane. We found distinct patterns of changes in central respiratory rate, duration of inspiratory and expiratory phases of PNA (Ti and Te, respectively), and I-burst amplitude after selective blockade of EAA and IAA receptors in the LTF. First, blockade of N-methyl-d-aspartate (NMDA) receptors significantly ( P < 0.05) decreased central respiratory rate primarily by increasing Ti but did not alter I-burst amplitude. Second, blockade of non-NMDA receptors significantly reduced I-burst amplitude without affecting central respiratory rate. Third, blockade of GABAA receptors significantly decreased central respiratory rate by increasing Te and significantly reduced I-burst amplitude. Fourth, blockade of glycine receptors significantly decreased central respiratory rate by causing proportional increases in Ti and Te and significantly reduced I-burst amplitude. These changes in PNA were markedly different from those produced by blockade of EAA or IAA receptors in the pre-Bötzinger complex. We propose that a proper balance of excitatory and inhibitory inputs to several functionally distinct pools of LTF neurons is essential for maintaining the normal pattern of PNA in anesthetized cats.


2010 ◽  
Vol 299 (3) ◽  
pp. H925-H931 ◽  
Author(s):  
G. S. Gilmartin ◽  
M. Lynch ◽  
R. Tamisier ◽  
J. W. Weiss

Chronic intermittent hypoxia (CIH) is thought to be responsible for the cardiovascular disease associated with obstructive sleep apnea (OSA). Increased sympathetic activation, altered vascular function, and inflammation are all putative mechanisms. We recently reported (Tamisier R, Gilmartin GS, Launois SH, Pepin JL, Nespoulet H, Thomas RJ, Levy P, Weiss JW. J Appl Physiol 107: 17–24, 2009) a new model of CIH in healthy humans that is associated with both increases in blood pressure and augmented peripheral chemosensitivity. We tested the hypothesis that exposure to CIH would also result in augmented muscle sympathetic nerve activity (MSNA) and altered vascular reactivity contributing to blood pressure elevation. We therefore exposed healthy subjects between the ages of 20 and 34 yr ( n = 7) to 9 h of nocturnal intermittent hypoxia for 28 consecutive nights. Cardiovascular and hemodynamic variables were recorded at three time points; MSNA was collected before and after exposure. Diastolic blood pressure (71 ± 1.3 vs. 74 ± 1.7 mmHg, P < 0.01), MSNA [9.94 ± 2.0 to 14.63 ± 1.5 bursts/min ( P < 0.05); 16.89 ± 3.2 to 26.97 ± 3.3 bursts/100 heartbeats (hb) ( P = 0.01)], and forearm vascular resistance (FVR) (35.3 ± 5.8 vs. 55.3 ± 6.5 mmHg·ml−1·min·100 g tissue, P = 0.01) all increased significantly after 4 wk of exposure. Forearm blood flow response following ischemia of 15 min (reactive hyperemia) fell below baseline values after 4 wk, following an initial increase after 2 wk of exposure. From these results we conclude that the increased blood pressure following prolonged exposure to CIH in healthy humans is associated with sympathetic activation and augmented FVR.


Sign in / Sign up

Export Citation Format

Share Document