proprioceptive inputs
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Natasha Ratcliffe ◽  
Katie Greenfield ◽  
Danielle Ropar ◽  
Ellen M. Howard ◽  
Roger Newport

Forming an accurate representation of the body relies on the integration of information from multiple sensory inputs. Both vision and proprioception are important for body localization. Whilst adults have been shown to integrate these sources in an optimal fashion, few studies have investigated how children integrate visual and proprioceptive information when localizing the body. The current study used a mediated reality device called MIRAGE to explore how the brain weighs visual and proprioceptive information in a hand localization task across early childhood. Sixty-four children aged 4–11 years estimated the position of their index finger after viewing congruent or incongruent visuo-proprioceptive information regarding hand position. A developmental trajectory analysis was carried out to explore the effect of age on condition. An age effect was only found in the incongruent condition which resulted in greater mislocalization of the hand toward the visual representation as age increased. Estimates by younger children were closer to the true location of the hand compared to those by older children indicating less weighting of visual information. Regression analyses showed localizations errors in the incongruent seen condition could not be explained by proprioceptive accuracy or by general attention or social differences. This suggests that the way in which visual and proprioceptive information are integrated optimizes throughout development, with the bias toward visual information increasing with age.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tien-Thong Nguyen Do ◽  
Chin-Teng Lin ◽  
Klaus Gramann

AbstractSpatial navigation is a complex cognitive process based on multiple senses that are integrated and processed by a wide network of brain areas. Previous studies have revealed the retrosplenial complex (RSC) to be modulated in a task-related manner during navigation. However, these studies restricted participants’ movement to stationary setups, which might have impacted heading computations due to the absence of vestibular and proprioceptive inputs. Here, we present evidence of human RSC theta oscillation (4–8 Hz) in an active spatial navigation task where participants actively ambulated from one location to several other points while the position of a landmark and the starting location were updated. The results revealed theta power in the RSC to be pronounced during heading changes but not during translational movements, indicating that physical rotations induce human RSC theta activity. This finding provides a potential evidence of head-direction computation in RSC in healthy humans during active spatial navigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Or Yizhar ◽  
Galit Buchs ◽  
Benedetta Heimler ◽  
Doron Friedman ◽  
Amir Amedi

AbstractPerceiving the spatial location and physical dimensions of touched objects is crucial for goal-directed actions. To achieve this, our brain transforms skin-based coordinates into a reference frame by integrating visual and posture information. In the current study, we examine the role of posture in mapping tactile sensations to a visual image. We developed a new visual-to-touch sensory substitution device that transforms images into a sequence of vibrations on the arm. 52 blindfolded participants performed spatial recognition tasks in three different arm postures and had to switch postures between trial blocks. As participants were not told which side of the device is down and which is up, they could choose how to map its vertical axis in their responses. Contrary to previous findings, we show that new proprioceptive inputs can be overridden in mapping tactile sensations. We discuss the results within the context of the spatial task and the various sensory contributions to the process.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008848
Author(s):  
Chang Xu ◽  
Yuxiang Wang ◽  
Gregory J. Gerling

Our sense of touch helps us encounter the richness of our natural world. Across a myriad of contexts and repetitions, we have learned to deploy certain exploratory movements in order to elicit perceptual cues that are salient and efficient. The task of identifying optimal exploration strategies and somatosensory cues that underlie our softness perception remains relevant and incomplete. Leveraging psychophysical evaluations combined with computational finite element modeling of skin contact mechanics, we investigate an illusion phenomenon in exploring softness; where small-compliant and large-stiff spheres are indiscriminable. By modulating contact interactions at the finger pad, we find this elasticity-curvature illusion is observable in passive touch, when the finger is constrained to be stationary and only cutaneous responses from mechanosensitive afferents are perceptible. However, these spheres become readily discriminable when explored volitionally with musculoskeletal proprioception available. We subsequently exploit this phenomenon to dissociate relative contributions from cutaneous and proprioceptive signals in encoding our percept of material softness. Our findings shed light on how we volitionally explore soft objects, i.e., by controlling surface contact force to optimally elicit and integrate proprioceptive inputs amidst indiscriminable cutaneous contact cues. Moreover, in passive touch, e.g., for touch-enabled displays grounded to the finger, we find those spheres are discriminable when rates of change in cutaneous contact are varied between the stimuli, to supplant proprioceptive feedback.


2021 ◽  
Vol 118 (9) ◽  
pp. e2019555118
Author(s):  
Shriya S. Srinivasan ◽  
Samantha Gutierrez-Arango ◽  
Ashley Chia-En Teng ◽  
Erica Israel ◽  
Hyungeun Song ◽  
...  

Despite advancements in prosthetic technologies, patients with amputation today suffer great diminution in mobility and quality of life. We have developed a modified below-knee amputation (BKA) procedure that incorporates agonist–antagonist myoneural interfaces (AMIs), which surgically preserve and couple agonist–antagonist muscle pairs for the subtalar and ankle joints. AMIs are designed to restore physiological neuromuscular dynamics, enable bidirectional neural signaling, and offer greater neuroprosthetic controllability compared to traditional amputation techniques. In this prospective, nonrandomized, unmasked study design, 15 subjects with AMI below-knee amputation (AB) were matched with 7 subjects who underwent a traditional below-knee amputation (TB). AB subjects demonstrated significantly greater control of their residual limb musculature, production of more differentiable efferent control signals, and greater precision of movement compared to TB subjects (P < 0.008). This may be due to the presence of greater proprioceptive inputs facilitated by the significantly higher fascicle strains resulting from coordinated muscle excursion in AB subjects (P < 0.05). AB subjects reported significantly greater phantom range of motion postamputation (AB: 12.47 ± 2.41, TB: 10.14 ± 1.45 degrees) when compared to TB subjects (P < 0.05). Furthermore, AB subjects also reported less pain (12.25 ± 5.37) than TB subjects (17.29 ± 10.22) and a significant reduction when compared to their preoperative baseline (P < 0.05). Compared with traditional amputation, the construction of AMIs during amputation confers the benefits of enhanced physiological neuromuscular dynamics, proprioception, and phantom limb perception. Subjects’ activation of the AMIs produces more differentiable electromyography (EMG) for myoelectric prosthesis control and demonstrates more positive clinical outcomes.


2021 ◽  
Vol 14 ◽  
Author(s):  
Megan L. Gill ◽  
Margaux B. Linde ◽  
Rena F. Hale ◽  
Cesar Lopez ◽  
Kalli J. Fautsch ◽  
...  

Background: Regaining control of movement following a spinal cord injury (SCI) requires utilization and/or functional reorganization of residual descending, and likely ascending, supraspinal sensorimotor pathways, which may be facilitated via task-specific training through body weight supported treadmill (BWST) training. Recently, epidural electrical stimulation (ES) combined with task-specific training demonstrated independence of standing and stepping functions in individuals with clinically complete SCI. The restoration of these functions may be dependent upon variables such as manipulation of proprioceptive input, ES parameter adjustments, and participant intent during step training. However, the impact of each variable on the degree of independence achieved during BWST stepping remains unknown.Objective: To describe the effects of descending intentional commands and proprioceptive inputs, specifically body weight support (BWS), on lower extremity motor activity and vertical ground reaction forces (vGRF) during ES-enabled BWST stepping in humans with chronic sensorimotor complete SCI. Furthermore, we describe perceived changes in the level of assistance provided by clinicians when intent and BWS are modified.Methods: Two individuals with chronic, mid thoracic, clinically complete SCI, enrolled in an IRB and FDA (IDE G150167) approved clinical trial. A 16-contact electrode array was implanted in the epidural space between the T11-L1 vertebral regions. Lower extremity motor output and vertical ground reaction forces were obtained during clinician-assisted ES-enabled treadmill stepping with BWS. Consecutive steps were achieved during various experimentally-controlled conditions, including intentional participation and varied BWS (60% and 20%) while ES parameters remain unchanged.Results: During ES-enabled BWST stepping, the knee extensors exhibited an increase in motor activation during trials in which stepping was passive compared to active or during trials in which 60% BWS was provided compared to 20% BWS. As a result of this increased motor activation, perceived clinician assistance increased during the transition from stance to swing. Intentional participation and 20% BWS resulted in timely and purposeful activation of the lower extremities muscles, which improved independence and decreased clinician assistance.Conclusion: Maximizing participant intention and optimizing proprioceptive inputs through BWS during ES-enabled BWST stepping may facilitate greater independence during BWST stepping for individuals with clinically complete SCI.Clinical Trial Registration:ClinicalTrials.gov identifier: NCT02592668.


2020 ◽  
Author(s):  
Tien-Thong Nguyen Do ◽  
Chin-Teng Lin ◽  
Klaus Gramann

AbstractSpatial navigation is a complex cognitive process based on multiple senses that are integrated and processed by a wide network of brain areas. Previous studies have revealed the retrosplenial complex (RSC) to be modulated in a task-related manner during navigation. However, these studies restricted participants’ movement to stationary setups, which might have impacted heading computations due to the absence of vestibular and proprioceptive inputs. Here, we investigated neural dynamics of RSC in an active spatial navigation task where participants actively ambulated from one location to several other points while the position of a landmark and the starting location were updated. The results revealed theta power in the RSC to be pronounced during heading changes but not during translational movements, indicating that physical rotations induce human RSC theta activity. This finding provides a potential evidence of head-direction computation in RSC in healthy humans during active spatial navigation.


Sign in / Sign up

Export Citation Format

Share Document