synaptic inhibition
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 60)

H-INDEX

65
(FIVE YEARS 4)

2022 ◽  
Vol 15 ◽  
Author(s):  
Melissa Serranilla ◽  
Melanie A. Woodin

Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.


2021 ◽  
Author(s):  
Bolaji P Enivaye ◽  
Victoria Booth ◽  
Anthony G Hudetz ◽  
Michal Zochowski

General anesthetics work through a variety of molecular mechanisms while resulting in the common end point of sedation and loss of consciousness. Generally, the administration of common inhalation anesthetics induces decreases in synaptic excitation while promoting synaptic inhibition. Animal studies have shown that, during anesthesia, exogenously induced increases in acetylcholine-mediated effects in the brain can elicit wakeful-like behavior despite the continued presence of the anesthetic. Less investigated, however, is the question of whether the brain's electrophysiological activity is also restored to pre-anesthetic levels and quality by such interventions. Here we apply a computational model of a network composed of excitatory and inhibitory neurons to simulate the network effects of changes in synaptic inhibition and excitation due to anesthesia and its reversal by muscarinic receptor-mediated cholinergic effects. We use a differential evolution algorithm to fit model parameters to match measures of spiking activity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts reversal of the neurons’ spiking activity, functional connectivity, as well as pairwise and population interactions. Thus, our model results predict a possible neuronal mechanism for the induced reversal of the effects of anesthesia on post synaptic potentials, consistent with experimental behavioral observations.


2021 ◽  
Author(s):  
Christopher Brian Currin ◽  
Joseph Valentino Raimondo

AbstractMany neurons in the mammalian central nervous system have complex dendritic arborisations and active dendritic conductances that enable these cells to perform sophisticated computations. How dendritically targeted inhibition affects local dendritic excitability is not fully understood. Here we use computational models of branched dendrites to investigate where GABAergic synapses should be placed to minimise dendritic excitability over time. To do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effectiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input. GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors (EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gradient. We, therefore, investigated how variable EGABA and dynamic chloride affects dendritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses accumulates at an encircled branch junction. The extent of inhibitory accumulation is dependent on the number of branches and location of synapses but is independent of EGABA. This accumulation occurs even for very distally placed inhibitory synapses when they are hyperpolarising – but not when they are shunting. When accounting for Cl- fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of GABAergic synapses which is close to – but not at – a shared branch junction. This distribution balances a trade-off between a stronger combined inhibitory influence when synapses closely encircle a branch junction with the deleterious effects of increased Cl- loading that occurs when inhibitory synapses are co-located.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lucie Landeck ◽  
Martin E. Kaiser ◽  
Dimitri Hefter ◽  
Andreas Draguhn ◽  
Martin Both

Behavioral flexibility depends on neuronal plasticity which forms and adapts the central nervous system in an experience-dependent manner. Thus, plasticity depends on interactions between the organism and its environment. A key experimental paradigm for studying this concept is the exposure of rodents to an enriched environment (EE), followed by studying differences to control animals kept under standard conditions (SC). While multiple changes induced by EE have been found at the cellular-molecular and cognitive-behavioral levels, little is known about EE-dependent alterations at the intermediate level of network activity. We, therefore, studied spontaneous network activity in hippocampal slices from mice which had previously experienced EE for 10–15 days. Compared to control animals from standard conditions (SC) and mice with enhanced motor activity (MC) we found several differences in sharp wave-ripple complexes (SPW-R), a memory-related activity pattern. Sharp wave amplitude, unit firing during sharp waves, and the number of superimposed ripple cycles were increased in tissue from the EE group. On the other hand, spiking precision with respect to the ripple oscillations was reduced. Recordings from single pyramidal cells revealed a reduction in synaptic inhibition during SPW-R together with a reduced inhibition-excitation ratio. The number of inhibitory neurons, including parvalbumin-positive interneurons, was unchanged. Altered activation or efficacy of synaptic inhibition may thus underlie changes in memory-related network activity patterns which, in turn, may be important for the cognitive-behavioral effects of EE exposure.


2021 ◽  
Author(s):  
Bernhard Bettler ◽  
Giogio Rizzi ◽  
Thorsten Fritzius ◽  
Enrique Perez-Garci ◽  
Alessandra Porcu ◽  
...  

Aversive stimuli inhibiting dopamine neurons in the ventral tegmental area (DAVTA neurons) induce anxiety-like behaviors. The inhibition of DAVTA neurons is prolonged by GABAB receptor (GBR)-activated K+-currents, which exhibit a rapid desensitization of unknown physiological relevance. We now report that GBRs associate via auxiliary KCTD16 subunits with HCN channels, which facilitates activation of hyperpolarization activated currents (Ih) by GBR-activated K+ currents. Activation of Ih underlies rapid K+ current desensitization in DAVTA neurons and limits GBR-mediated inhibition. Disruption of the GBR/HCN complex in KCTD16-/- mice or blockade of Ih prolongs optogenetically driven inhibition of DAVTA neuron firing. KCTD16-/- mice exhibit an increased anxiety-like behavior in response to stressful stimuli, which is reproduced by in vivo CRISPR/Cas9-mediated KCTD16 ablation in DAVTA neurons or intra-VTA infusion of HCN antagonist to wild-type mice. Our data reveal that GBR-induced Ih protect DAVTA neurons from prolonged GBR mediated inhibition in response to stressors, which moderates anxiety-like behaviors.


2021 ◽  
Author(s):  
Leslie K Kelley ◽  
Jason Middleton ◽  
Nicholas W. Gilpin ◽  
Savannah HM Lightfoot ◽  
Matthew N Hill

To reduce reliance on opioids for the treatment of pain in the clinic, ongoing work is testing the utility of cannabinoid drugs as a potential alternative for treatment of chronic pain and/or as a strategy for reducing opioid drug dosage and duration of treatment (i.e., so-called opioid-sparing effects). Previous preclinical work has shown robust anti-hyperalgesic effects of systemic THC and acute anti-hyperalgesic effects of vaporized THC. Here, we used a vapor inhalation model in rats to test chronic THC vapor inhalation effects on thermal nociception and mechanical sensitivity, as well as midbrain (i.e., periaqueductal gray [PAG]) neuronal function, in adult male rats with chronic inflammatory pain. We report that chronic THC vapor inhalation produces a robust anti-hyperalgesic effect in rats with chronic inflammatory pain, and that this effect persists 24 hours after cessation of THC exposure. We demonstrate that chronic THC vapor inhalation also modulates intrinsic and synaptic properties of ventrolateral PAG (vlPAG) neurons, including reductions in action potential firing rate and reductions in spontaneous inhibitory synaptic transmission, and that these effects occur specifically in neurons that respond to current input with a delayed firing phenotype. Finally, we show that the suppressive effect of the bath-applied mu-opioid receptor (MOR) agonist DAMGO on synaptic inhibition in the vlPAG is enhanced in slices taken from rats with a history of chronic THC vapor inhalation. Collectively, these data show that chronic THC vapor inhalation produces lasting attenuation of thermal hyperalgesia and reduces synaptic inhibition in the vlPAG of rats with chronic inflammatory pain.


Sign in / Sign up

Export Citation Format

Share Document