Dynamics of Stimulus-Evoked Spike Timing Correlations in the Cat Lateral Geniculate Nucleus

2010 ◽  
Vol 104 (6) ◽  
pp. 3276-3292 ◽  
Author(s):  
Hiroyuki Ito ◽  
Pedro E. Maldonado ◽  
Charles M. Gray

Precisely synchronized neuronal activity has been commonly observed in the mammalian visual pathway. Spike timing correlations in the lateral geniculate nucleus (LGN) often take the form of phase synchronized oscillations in the high gamma frequency range. To study the relations between oscillatory activity, synchrony, and their time-dependent properties, we recorded activity from multiple single units in the cat LGN under stimulation by stationary spots of light. Autocorrelation analysis showed that approximately one third of the cells exhibited oscillatory firing with a mean frequency ∼80 Hz. Cross-correlation analysis showed that 30% of unit pairs showed significant synchronization, and 61% of these pairs consisted of synchronous oscillations. Cross-correlation analysis assumes that synchronous firing is stationary and maintained throughout the period of stimulation. We tested this assumption by applying unitary events analysis (UEA). We found that UEA was more sensitive to weak and transient synchrony than cross-correlation analysis and detected a higher incidence (49% of cell pairs) of significant synchrony (unitary events). In many unit pairs, the unitary events were optimally characterized at a bin width of 1 ms, indicating that neural synchrony has a high degree of temporal precision. We also found that approximately one half of the unit pairs showed nonstationary changes in synchrony that could not be predicted by the modulation of firing rates. Population statistics showed that the onset of synchrony between LGN cells occurred significantly later than that observed between retinal afferents and LGN cells. The synchrony detected among unit pairs recorded on separate tetrodes tended to be more transient and have a later onset than that observed between adjacent units. These findings show that stimulus-evoked synchronous activity within the LGN is often rhythmic, highly nonstationary, and modulated by endogenous processes that are not tightly correlated with firing rate.

1999 ◽  
Vol 81 (3) ◽  
pp. 999-1013 ◽  
Author(s):  
Stephane Roy ◽  
Kevin D. Alloway

Stimulus-induced increases in the synchronization of local neural networks in the somatosensory cortex: a comparison of stationary and moving stimuli. Spontaneous and stimulus-induced responses were recorded from neighboring groups of neurons by an array of electrodes in the primary (SI) somatosensory cortex of intact, halothane-anesthetized cats. Cross-correlation analysis was used to characterize the coordination of spontaneous activity and the responses to peripheral stimulation with moving or stationary air jets. Although synchronization was detected in only 10% (88 of 880) of the pairs of single neurons that were recorded, cross-correlation analysis of multiunit responses revealed significant levels of synchronization in 64% of the 123 recorded electrode pairs. Compared with spontaneous activity, both stationary and moving air jets caused substantial increases in the rate, proportion, and temporal precision of synchronized activity in local regions of SI cortex. Among populations of neurons that were synchronized by both types of air-jet stimulation, the mean rate of synchronized activity was significantly higher during moving air-jet stimulation than during stationary air-jet stimulation. Moving air jets also produced significantly higher correlation coefficients than stationary air jets in the raw cross-correlograms (CCGs) but not in the shift-corrected CCGs. The incidence and rate of stimulus-induced synchronization varied with the distance separating the recording sites. For sites separated by ≤300 μm, 80% of the multiunit responses displayed significant levels of synchronization during both types of air-jet stimulation. For sites separated by ≥500 μm, only 37% of the multiunit responses were synchronized by discrete stimulation with a single air jet. Measurements of the multiunit CCG peak half-widths showed that the correlated activity produced by moving air jets had slightly less temporal variability than that produced by stationary air jets. These results indicate that moving stimuli produce greater levels of synchronization than stationary stimuli among local groups of SI neurons and suggest that neuronal synchronization may supplement the changes in firing rate which code intensity and other attributes of a cutaneous stimulus.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2010 ◽  
Vol 09 (02) ◽  
pp. 203-217 ◽  
Author(s):  
XIAOJUN ZHAO ◽  
PENGJIAN SHANG ◽  
YULEI PANG

This paper reports the statistics of extreme values and positions of extreme events in Chinese stock markets. An extreme event is defined as the event exceeding a certain threshold of normalized logarithmic return. Extreme values follow a piecewise function or a power law distribution determined by the threshold due to a crossover. Extreme positions are studied by return intervals of extreme events, and it is found that return intervals yield a stretched exponential function. According to correlation analysis, extreme values and return intervals are weakly correlated and the correlation decreases with increasing threshold. No long-term cross-correlation exists by using the detrended cross-correlation analysis (DCCA) method. We successfully introduce a modification specific to the correlation and derive the joint cumulative distribution of extreme values and return intervals at 95% confidence level.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1540-1541
Author(s):  
Tristan O'Neill ◽  
B. C. Regan ◽  
Matthew Mecklenburg

Sign in / Sign up

Export Citation Format

Share Document