Thalamocortical Specificity and the Synthesis of Sensory Cortical Receptive Fields

2005 ◽  
Vol 94 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Jose-Manuel Alonso ◽  
Harvey A. Swadlow

A persistent and fundamental question in sensory cortical physiology concerns the manner in which receptive fields of layer-4 neurons are synthesized from their thalamic inputs. According to a hierarchical model proposed more than 40 years ago, simple receptive fields in layer 4 of primary visual cortex originate from the convergence of highly specific thalamocortical inputs (e.g., geniculate inputs with on-center receptive fields overlap the on subregions of layer 4 simple cells). Here, we summarize studies in the visual cortex that provide support for this high specificity of thalamic input to visual cortical simple cells. In addition, we review studies of GABAergic interneurons in the somatosensory “barrel” cortex with receptive fields that are generated by a very different mechanism: the nonspecific convergence of thalamic inputs with different response properties. We hypothesize that these 2 modes of thalamocortical connectivity onto subpopulations of excitatory and inhibitory neurons constitute a general feature of sensory neocortex and account for much of the diversity seen in layer-4 receptive fields.


2003 ◽  
Vol 89 (2) ◽  
pp. 1003-1015 ◽  
Author(s):  
W. Martin Usrey ◽  
Michael P. Sceniak ◽  
Barbara Chapman

The ferret has become a model animal for studies exploring the development of the visual system. However, little is known about the receptive-field structure and response properties of neurons in the adult visual cortex of the ferret. We performed single-unit recordings from neurons in layer 4 of adult ferret primary visual cortex to determine the receptive-field structure and visual-response properties of individual neurons. In particular, we asked what is the spatiotemporal structure of receptive fields of layer 4 neurons and what is the orientation selectivity of layer 4 neurons? Receptive fields of layer 4 neurons were mapped using a white-noise stimulus; orientation selectivity was determined using drifting, sine-wave gratings. Our results show that most neurons (84%) within layer 4 are simple cells with elongated, spatially segregated,on and off subregions. These neurons are also selective for stimulus orientation; peaks in orientation-tuning curves have, on average, a half-width at half-maximum response of 21.5 ± 1.2° (mean ± SD). The remaining neurons in layer 4 (16%) lack orientation selectivity and have center/surround receptive fields. Although the organization of geniculate inputs to layer 4 differs substantially between ferret and cat, our results demonstrate that, like in the cat, most neurons in ferret layer 4 are orientation-selective simple cells.



2002 ◽  
Vol 88 (4) ◽  
pp. 2163-2166 ◽  
Author(s):  
Barbara Chapman ◽  
Imke Gödecke

Primary visual cortex contains functional maps of a number of stimulus properties including ocular dominance, orientation, direction, color, and spatial frequency. These maps must be organized with respect to each other and to a single continuous retinotopic map of visual space such that each stimulus parameter is represented at each point in space. In the ferret, geniculo-cortical inputs to cortical layer IV are segregated into on- andoff-center patches, suggesting the possibility that there might be an additional cortical map in this species. We have used optical imaging of intrinsic signals to search for on-offmaps in ferret visual cortical cells and have found none. This suggests that the high degree of on-off segregation seen subcortically in the ferret may play a role in the development of visual cortical receptive fields rather than in adult cortical function.



Author(s):  
Zuojin Li ◽  
Jun Peng ◽  
Liukui Chen ◽  
Chen Gui ◽  
Lei Song

The brain visual cortical simple cells have strong response to notable edges with directivity and contrast of light and dark, as well as the non-classical receptive fields of the neurons in visual cortex that have inhibition function to small light-spot stimulation. Because of this property, human vision system contrast sensitivity tends to dynamic videos. This paper, based on biological visual features, constructs an energy-computing model for dynamic video behaviors analysis, and designs computing methods for strengthening selectivity to directions of edges and inhibiting energy of non-significant areas in the images. The experiment is conducted on 30,000 frames of dynamic behaviors in video and shows 90% accuracy, which proves that the proposed method is capable to simulate the function of visual cortex simple cells, i.e. the enhancement to directional selection, and the inhabitation function of non-classical receptive fields, as well as extract energy features of dynamic behaviors in video. This contributes a choice for computer image processing and improves the understanding of machine vision.



2001 ◽  
Vol 13 (2) ◽  
pp. 327-355 ◽  
Author(s):  
Ulrich Hillenbrand ◽  
J. Leo van Hemmen

The thalamus is the major gate to the cortex, and its contribution to cortical receptive field properties is well established. Cortical feedback to the thalamus is, in turn, the anatomically dominant input to relay cells, yet its influence on thalamic processing has been difficult to interpret. For an understanding of complex sensory processing, detailed concepts of the corticothalamic interplay need to be established. To study corticogeniculate processing in a model, we draw on various physiological and anatomical data concerning the intrinsic dynamics of geniculate relay neurons, the cortical influence on relay modes, lagged and nonlagged neurons, and the structure of visual cortical receptive fields. In extensive computer simulations, we elaborate the novel hypothesis that the visual cortex controls via feedback the temporal response properties of geniculate relay cells in a way that alters the tuning of cortical cells for speed.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rongkang Deng ◽  
Joseph P. Y. Kao ◽  
Patrick O. Kanold

AbstractThe development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development. Since previous studies have shown that retinal input can regulate the early development of connections along the visual pathway, we investigated if the maturation of glutamatergic inputs to GABAergic interneurons in the visual cortex requires retinal input. We mapped the spatial pattern of glutamatergic connections to layer 4 (L4) GABAergic interneurons in mouse visual cortex at around postnatal day (P) 16 by laser-scanning photostimulation and investigated the effect of binocular enucleations at P1/P2 on these patterns. Gad2-positive interneurons in enucleated animals showed an increased fraction of AMPAR-mediated input from L2/3 and a decreased fraction of input from L5/6. Parvalbumin-expressing (PV) interneurons showed similar changes in relative connectivity. NMDAR-only input was largely unchanged by enucleation. Our results show that retinal input sculpts the integration of interneurons into V1 circuits and suggest that the development of AMPAR- and NMDAR-only connections might be regulated differently.



2013 ◽  
Vol 33 (28) ◽  
pp. 11372-11389 ◽  
Author(s):  
J. Zhuang ◽  
C. R. Stoelzel ◽  
Y. Bereshpolova ◽  
J. M. Huff ◽  
X. Hei ◽  
...  


1990 ◽  
Vol 64 (4) ◽  
pp. 1352-1360 ◽  
Author(s):  
M. R. Isley ◽  
D. C. Rogers-Ramachandran ◽  
P. G. Shinkman

1. The present experiments were designed to assess the effects of relatively large optically induced interocular torsional disparities on the developing kitten visual cortex. Kittens were reared with restricted visual experience. Three groups viewed a normal visual environment through goggles fitted with small prisms that introduced torsional disparities between the left and right eyes' visual fields, equal but opposite in the two eyes. Kittens in the +32 degrees goggle rearing condition experienced a 16 degrees counterclockwise rotation of the left visual field and a 16 degrees clockwise rotation of the right visual field; in the -32 degrees goggle condition the rotations were clockwise in the left eye and counterclockwise in the right. In the control (0 degree) goggle condition, the prisms did not rotate the visual fields. Three additional groups viewed high-contrast square-wave gratings through Polaroid filters arranged to provide a constant 32 degrees of interocular orientation disparity. 2. Recordings were made from neurons in visual cortex around the border of areas 17 and 18 in all kittens. Development of cortical ocular dominance columns was severely disrupted in all the experimental (rotated) rearing conditions. Most cells were classified in the extreme ocular dominance categories 1, 2, 6, and 7. Development of the system of orientation columns was also affected: among the relatively few cells with oriented receptive fields in both eyes, the distributions of interocular disparities in preferred stimulus orientation were centered near 0 degree but showed significantly larger variances than in the control condition.(ABSTRACT TRUNCATED AT 250 WORDS)



1976 ◽  
Vol 16 (10) ◽  
pp. 1131-IN5 ◽  
Author(s):  
Lamberto Maffei ◽  
Adriana Fiorentini


2000 ◽  
Vol 17 (1) ◽  
pp. 107-118 ◽  
Author(s):  
ULRICH HILLENBRAND ◽  
J. LEO van HEMMEN

The thalamus is the major gate to the cortex and its control over cortical responses is well established. Cortical feedback to the thalamus is, in turn, the anatomically dominant input to relay cells, yet its influence on thalamic processing has been difficult to interpret. For an understanding of complex sensory processing, detailed concepts of the corticothalamic interplay need yet to be established. Drawing on various physiological and anatomical data, we elaborate the novel hypothesis that the visual cortex controls the spatiotemporal structure of cortical receptive fields via feedback to the lateral geniculate nucleus. Furthermore, we present and analyze a model of corticogeniculate loops that implements this control, and exhibit its ability of object segmentation by statistical motion analysis in the visual field.



1998 ◽  
Vol 508 (2) ◽  
pp. 523-548 ◽  
Author(s):  
Dominique Debanne ◽  
Daniel E. Shulz ◽  
Yves Frégnac


Sign in / Sign up

Export Citation Format

Share Document