Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells

1976 ◽  
Vol 39 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
P. D. Wilson ◽  
M. H. Rowe ◽  
J. Stone

1. Observations are presented on the physiological properties of W-, X-, and Y-type relay cells in the cat's lateral geniculate nucleus (LGN). Emphasis is placed on the most recently recognized type, W-cells; data are presented on X- and Y-cells by way of comparison. 2. Seventy-seven W-cells were recognized on 70 microelectrode penetrations through the LGN. They resembled W-type retinal ganglion cells in their responses to visual stimuli. Tonic (on-center and off-center) W-cells, phasic (on-, off- and on-off center) W-cells, suppressed-by-contrast, and color-coded cells were recognized. 3. W-type relay cells also resembled retinal W-cells in their maintained activity and receptive field-center diameters. 4. W-type relay cells comprised 11.5% X-cells 48.4%, and Y-cells 22.3% of all LGN cells encountered on a reference sample of 62 electrode tracks. W-cells were found in laminae C, C1, and C2, comprising 36.5% of the sample in these laminae, but were not encountered in laminae A or A1. X- and Y-cells were found in laminae A, A1, and C. Within lamina C there was a tendency for X- and Y-cells to be located dorsal to W-cells. There was thus a substantial dorsoventral segregation of W-cells from X- and Y-cells. W-cells being found in the ventral parvocellular component of the dorsal LGN. 5. Cells considered to be W-type relay cells were shown to respond to electrical stimulation of the optic nerve and chiasm at latencies which were longer than those of X- and Y-cells, and were consistent with their receiving monosynaptic input from retinal W-cells. Geniculate W-cells of all subtypes were activated antidromically from the visual cortex. Their antidromic latencies were, on the average, longer than for Y- or X-cells, indicating that W-type relay cells had slower axons as well as slower retinal afferents, than X- or Y-cells. 6. The visual cortex thus appears to receive input from all three major types of retinal ganlion cells (W-, X-, and Y-cells) relayed separately, in parallel, by different groups of relay cells.

1983 ◽  
Vol 50 (1) ◽  
pp. 240-264 ◽  
Author(s):  
S. C. Mangel ◽  
J. R. Wilson ◽  
S. M. Sherman

We measured response properties of X- and Y-cells from laminae A and A1 of the dorsal lateral geniculate nucleus of monocularly lid-sutured cats at 8, 12, 16, 24, and 52-60 wk of age. Visual stimuli consisted of small spots of light and vertically oriented sine-wave gratings counterphased at a rate of 2 cycles/s. In cats as young as 8 wk of age, nondeprived and deprived neurons could be clearly identified as X-cells or Y-cells with criteria previously established for adult animals. Nonlinear responses of Y-cells from 8- and 12-wk-old cats were often temporally labile; that is, the amplitude of the nonlinear response of nondeprived and deprived cells increased or decreased suddenly. A similar lability was not noted for the linear response component. This phenomenon rarely occurred in older cats. At 8 wk of age, Y-cell proportions (number of Y-cells/total number of cells) in nondeprived and deprived A-laminae were approximately equal. By 12 wk of age and thereafter, the proportion of Y-cells in deprived laminae was significantly lower than that in nondeprived laminae. At no age was there a systematic difference in response properties (spatial resolution, latency to optic chiasm stimulation, etc.) for Y-cells between deprived and nondeprived laminae. Spatial resolution, defined as the highest spatial frequency to which a cell would respond at a contrast of 0.6, was similar for nondeprived and deprived X-cells until 24 wk of age. In these and older cats, the mean spatial resolution of deprived X-cells was lower than that of nondeprived X-cells. This difference was noted first for lamina A1 at 24 wk of age and later for lamina A at 52-60 wk of age. The average latency of X-cells to optic chiasm stimulation was slightly greater in deprived laminae than in nondeprived laminae. No such difference was seen for Y-cells. Cells with poor and inconsistent responses were encountered infrequently but were observed far more often in deprived laminae than in nondeprived laminae. Lid suture appears to affect the development of geniculate X- and Y-cells in very different ways. Not only is the final pattern of abnormalities quite different between these cell groups, but the developmental dynamics of these abnormalities also differ.


1983 ◽  
Vol 50 (6) ◽  
pp. 1393-1414 ◽  
Author(s):  
L. J. Frishman ◽  
D. E. Schweitzer-Tong ◽  
E. B. Goldstein

Velocity tuning curves were measured for on-center cells in the dorsal lateral geniculate nucleus of the cat using a stimulus approximately the height and one-fourth the width of the hand-plotted receptive-field center. The standard stimulus strength was 1 log unit above the mesopic background luminance. Lateral geniculate Y-cells had significantly higher preferred velocities than geniculate X-cells when cells with receptive fields having the same range of retinal eccentricities were compared. Preferred velocity increased for both classes of cells as a function of retinal eccentricity. For all geniculate cells, preferred velocity increased with stimulus strength, showing an approximately threefold increase in preferred velocity for each log unit of stimulus strength. Preferred velocity was measured for on-center retinal ganglion cells with receptive fields at the same range of retinal eccentricities as the geniculate sample and under the same stimulus conditions. Preferred velocities of retinal ganglion Y-cells were significantly higher than those of ganglion X-cells, and as for geniculate cells, preferred velocities increased with increasing stimulus strength. However, the classes were better separated in the geniculate than in the retina; with geniculate X-cells having lower preferred velocities than retinal X-cells, and the geniculate Y-cells having higher preferred velocities than retinal Y-cells. For retinal ganglion cells, smaller receptive-field center sizes of the X-cells than the Y-cells could account in large part for the lower preferred velocities of the X-cells. However, for geniculate cells, differences in receptive-field center size could not account as well for the differences in preferred velocity between X- and Y-cells. Furthermore, field size differences could not account for the differences in preferred velocity between ganglion and geniculate cells of the same functional class. Experiments comparing responses to moving stimuli and flashed stationary stimuli show that stimuli moving at high velocities are in effect equivalent to brief-duration flashes, and responses are governed by the same laws of temporal summation in both cases. When velocity tuning curves were measured with long bars that enhanced peripheral inhibition, geniculate X- and Y-cells were better separated than ganglion X- and Y-cells, not only with respect to preferred velocity but also, with respect to velocity selectivity (width of the velocity tuning curve) and differential velocity sensitivity (slope of the leg of the velocity tuning curves ascending from low velocities to the peak).(ABSTRACT TRUNCATED AT 400 WORDS)


Four physiologically identified neurons in the A laminae of the cat’s dorsal lateral geniculate nucleus were filled with horseradish peroxidase and studied using the electron microscope. Two were X-cells and two were Y-cells. Each had electrophysiological properties appropriate for its X- or Y-cell class, and each also had an axon that projected into the optic radiation, indicative of a geniculocortical relay cell. Representative samples from about 10% of each neuron’s entire dendritic arbor (proximal and distal) were taken to obtain an estimate of the types and distributions of synapses contacting these arbors. One X-cell had a cytoplasmic laminar body, but there were no other significant cytological differences seen among the neurons. Common to each of the neurons were the following synaptic features: (i) retinal terminals (r. l. p.) were mostly or entirely restricted to proximal dendrites or dendritic appendages (< 100 μm from the soma). These terminals constituted about 15-25% of the synapses on the proximal dendrites, (ii) Terminals with flattened or pleomorphic synaptic vesicles (f. terminals) were predominant on the proximal dendrites (30-55% of the total synapses for that region) and were mainly located near the retinal terminals. A smaller percentage (10-20%) were also distributed onto the distal dendrites, (iii) Small terminals with round synaptic vesicles (r. s. d.), many presumably having a cortical origin, predominated (60-80%) on distal dendrites (> 100 μm), but also formed a large proportion (40-70%) of the synapses on the intermediate (50-150 μm) dendrites. Total synaptic contacts for one X-cell and one Y-cell were estimated at about 4000 and 5000, respectively. The major fine structural differences observed between X- and Y-cells were almost entirely related to the retinal afferents. First, the retinal synapses for X-cells were mostly made on to dendritic appendages (spines, etc.), whereas Y-cells had most of their retinal synapses onto the shafts of primary and proximal secondary dendrites (that is, near branch points). Second, the retinal terminals that contacted X-cell dendrites nearly always formed triadic arrangements that included nearby f. terminals, but those on Y-cells rarely did so. Finally, the main type of f. terminals associated with X-cells were morphologically different from most of those associated with the Y-cells, and this also related directly to the triadic arrangements; that is, f. terminals in the triadic arrangements were morphologically distinguishable from f. terminals that did not participate in triadic arrangements. Even though the present sample is quite small, these morphological differences between X- and Y-cells indicate that they might be the synaptic basis for some of the differential processing of information occurring for the two cell types in the lateral geniculate nucleus.


Transneuronal retrograde degeneration of retinal ganglion cells was investigated following neonatal visual cortex ablation in the cat. After a survival time of at least 18 months, retinal ganglion cells projecting to the thalamus were labelled by retrograde transport of horseradish peroxidase. Filled ganglion cells were classified into α , β and γ types on the basis of dendritic morphology. In normal cats, α cells made up 8-10% of the total population in the sample area, β cells made up 64-67% and γ cells made up 23-27%. In retinae of visual cortex-ablated cats, normal numbers of α and γ cells were present, but the β cell population was depleted by 90% of normal. Thalamic projections of surviving retinal ganglion cells were investigated by anterograde transport of tritiated proline injected into the eye. In these animals, ablation of visual cortex resulted in almost complete degeneration of laminae A and A1 of the dorsal lateral geniculate nucleus. In the radioautographic material, projections from the retina to the degenerated parts of laminae A and A1 were barely detectable. Survival of some ganglion cell populations and death of others after neonatal visual cortex ablation may be explained in terms of the pattern of projections of the different cell types. We conclude that the majority of β cells degenerate following visual cortex ablation because of removal of cells in the dorsal lateral geniculate nucleus which form their sole or principal target. Alpha and γ cells and 10% of β -cells survive because of extensive collateral projections to targets other than cells of the laminae A and A1 of dorsal lateral geniculate nucleus.


1983 ◽  
Vol 49 (2) ◽  
pp. 303-324 ◽  
Author(s):  
D. N. Mastronarde

1. The shared inputs to cat retinal ganglion cells have been investigated by studying correlations in the maintained firing of neighboring ganglion cells. The firing of one cell was recorded from its axon in the optic tract, while that of a neighboring cell was simultaneously recorded with a second electrode in the retina. The recorded cells were of the X- or Y-type and viewed a uniform screen having a luminance of 10 cd/m2. 2. Ganglion cells with overlapping receptive-field centers showed two basic forms of correlated firing: if they had the same center sign (both on-center or both off-center), then they tended to fire at the same time, as shown by a peak in their cross-correlogram; but if they had opposite center signs (an on- and and off-center cell), they tended not to fire at the same time, as shown by a well, or dip, in their cross-correlogram. 3. Both of these tendencies were strongest for cells that were close together and did not appear for cells with nonoverlapping receptive-field centers. The strongest correlations were between neighboring Y-cells, cells with large fields, and the weakest were between X-cells, cells with small fields. In general, the strength of the correlations depended primarily on the area of the overlap between fields. 4. These correlations in maintained firing appear to be principally or entirely caused by shared inputs to the ganglion cells from more distal retinal neurons. The signals from these distal neurons appear to have strong, brief (4-8 ms), well-defined effects on ganglion cells, which are observed even in the absence of a visual stimulus. The inputs responsible for the correlated firing are thus referred to as spontaneously active inputs or simply as active inputs. 5. An analysis of the features in the various types of cross-correlograms supports the following statements about these spontaneously active inputs. a) There are two types of active inputs: inputs excitatory to on-center cells and simultaneously inhibitory to off-center center cells and inputs excitatory to off-center cells and simultaneously inhibitory to on-center cells. b) The active inputs of each type provide excitation to both X- and Y-cells of one center sign and inhibition to both X- and Y-cells of the other center sign. There is no evidence for a special class of more selective inputs providing input only to X-cells or only to Y-cells. c) Active inputs account for the majority (about 80%) of the spikes in the maintained activity of Y-cells but only a small fraction (about 15%) of the spikes in the maintained activity of X-cells. 6. A likely source of the active input signals appears to be spiking amacrine cells with a low rate of spontaneous activity.


1990 ◽  
Vol 64 (1) ◽  
pp. 206-224 ◽  
Author(s):  
A. B. Saul ◽  
A. L. Humphrey

1. It has recently been shown that the X- and Y-cell classes in the A-layers of the cat lateral geniculate nucleus (LGN) are divisible into lagged and nonlagged types. We have characterized the visual response properties of 153 cells in the A-layers to 1) reveal response features that are relevant to the X/Y and lagged/nonlagged classification schemes, and 2) provide a systematic description of the properties of lagged and nonlagged cells as a basis for understanding mechanisms that affect these two groups. Responses to flashing spots and drifting gratings were measured as the contrast and spatial and temporal modulation were varied. 2. X- and Y-cells were readily distinguished by their spatial tuning. Y-cells had much lower preferred spatial frequencies and spatial resolution than X-cells. Within each functional class (X or Y), however, lagged and nonlagged cells were similar in their spatial response properties. Thus the lagged/nonlagged distinction is not one related to the spatial domain. 3. In the temporal domain X- and Y-cells showed little difference in temporal tuning, whereas lagged and nonlagged cells showed distinctive response properties. The temporal tuning functions of lagged cells were slightly shifted toward lower frequencies with optimal temporal frequencies of lagged X-cells averaging an octave lower than those of nonlagged X-cells. Temporal resolution was much lower in lagged X- and Y-cells than in their nonlagged counterparts. 4. The most dramatic differences between lagged and nonlagged cells appeared in the timing of their responses, as measured by the phase of the response relative to the sinusoidal luminance modulation of a spot centered in the receptive field. Response phase varied approximately linearly with temporal frequency. The slope of the phase versus frequency line is a measure of total integration time, which we refer to as visual latency. Lagged cells has much longer latencies than nonlagged cells. 5. The intercept of the phase versus frequency line is a measure of when in the stimulus cycle the cell responds: we refer to this as the intrinsic or absolute phase of the cell. This measure of response timing not only distinguished lagged and nonlagged cells well but also covaried with the sustained or transient nature of cells' responses to flashed stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


Sign in / Sign up

Export Citation Format

Share Document