Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons

1985 ◽  
Vol 53 (6) ◽  
pp. 1551-1566 ◽  
Author(s):  
S. M. Barman ◽  
G. L. Gebber

We studied the following properties of cat ventrolateral medullary (VLM) neurons that projected to the thoracic spinal cord: the relationship between their spontaneous activity and that in the inferior cardiac postganglionic sympathetic nerve, their responses to baroreceptor-reflex activation, their axonal conduction velocities, the funicular trajectories of their axons, the likely sites of termination of their axons, and their axonal branching patterns. Microstimulation in the second thoracic spinal segment (T2) antidromically activated 67 VLM neurons (as determined with time-controlled collision of spontaneous and evoked action potentials), whose activity was correlated to inferior cardiac sympathetic nerve discharge (as determined with spike-triggered averaging). We tested the effect of baroreceptor-reflex activation on the firing rate of 20 of these VLM-spinal neurons. Because the firing rate decreased in each instance, these neurons apparently subserved a sympathoexcitatory function. The axonal branching patterns of 51 VLM-spinal sympathoexcitatory neurons were studied. Thirty-four neurons were antidromically activated by stimulation in the T2 gray matter and in more caudal thoracic spinal segments (T11 and/or T6). In each case, the antidromic response evoked by stimulation in the T2 gray matter was due to activation of an axonal branch rather than the main axon (via current spread to the white matter). This was demonstrated with tests that included time-controlled collision of the action potentials initiated by stimulation in T2 and a more caudal thoracic spinal segment. Some VLM-spinal axons that projected to T11 branched in T6 as well as in T2. These data indicate that some VLM-spinal neurons exerted widespread excitatory influences on sympathetic outflow. Seventeen VLM sympathoexcitatory neurons that innervated the T2 gray matter could not be antidromically activated by stimulation in T5, T6, and T11 despite an extensive search at each level. Thus the axonal projections of some VLM-spinal neurons were restricted to upper thoracic segments. Antidromic mapping in T2 revealed that the axons of VLM sympathoexcitatory neurons coursed through the dorsolateral or ventrolateral funiculus to innervate the region of the intermediolateral nucleus. Mean axonal conduction velocity was 3.5 +/- 0.3 m/s. Those VLM-spinal axons restricted to upper thoracic segments generally were located dorsally and/or medially to those that innervated widely separated thoracic segments. The discharges of 35 other VLM neurons that were antidromically activated by T2 stimulation were not related to sympathetic nerve activity.(ABSTRACT TRUNCATED AT 400 WORDS)

1985 ◽  
Vol 53 (3) ◽  
pp. 759-772 ◽  
Author(s):  
S. F. Morrison ◽  
G. L. Gebber

We studied axonal branching patterns and funicular trajectories of cat medullary raphespinal neurons with spontaneous activity related to inferior cardiac postganglionic sympathetic nerve discharge (as demonstrated with spike-triggered averaging). These neurons were excited by raising carotid sinus pressure. We have classified these neurons as sympathoinhibitory in function and refer to them here as RS neurons. Microstimulation of the second thoracic spinal segment (T2) antidromically activated RS neurons (as determined with time-controlled collision of spontaneous and evoked action potentials). The longest-latency antidromic responses were elicited with the lowest-threshold current from sites in the intermediolateral nucleus (IML). This observation suggests that RS neurons innervated IML. Most RS neurons activated from T2 were also antidromically activated by stimulation of a more caudal thoracic spinal segment (T6 or T12). Time-controlled collision of action potentials evoked by stimulation at two thoracic levels allowed us to distinguish activation of an axonal branch in T2 from that of the main axon coursing through T2 to the more caudal thoracic level. Of those RS axons that branched in T2, 78% descended at least as far caudal as T6, whereas 65% reached T12. The axonal projections of other RS neurons that innervated T2 were restricted to no more than two consecutive thoracic spinal segments (as determined by stimulation in T3). Antidromic mapping of T2 further revealed that the axons of RS neurons coursed through the dorsolateral, ventral, or ventrolateral funiculus to innervate the ipsilateral and/or contralateral IML. The conduction velocities of dorsolateral and ventral RS axons indicated that they were finely myelinated. The data demonstrate the existence of RS neurons with restricted and widespread axonal branching patterns, thereby supporting the view that the medullary raphe complex is capable of regional as well as global inhibitory control over spinal sympathetic outflow.


2011 ◽  
Vol 165 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Marie Louise M. Ghorbani ◽  
Chao Qin ◽  
Mingyuan Wu ◽  
Jay P. Farber ◽  
Majid Sheykhzade ◽  
...  

1990 ◽  
Vol 258 (1) ◽  
pp. R10-R20 ◽  
Author(s):  
S. F. Hobbs ◽  
U. T. Oh ◽  
T. J. Brennan ◽  
M. J. Chandler ◽  
K. S. Kim ◽  
...  

Upper thoracic spinal neurons are primarily excited by cardiopulmonary spinal afferent input but are excited and inhibited by splanchnic afferent input. These data suggest that the greater the number of segments between a spinal neuron and spinal afferent input the greater the probability that the afferent input will inhibit the spinal neuron. Based on this idea we hypothesized that visceral (urinary bladder) and somatic (hindlimb) afferent input would inhibit upper thoracic spinal neurons. To test this hypothesis the activities of 69 spinal and 27 spinoreticular tract neurons in 45 alpha-chloralose-anesthetized cats were studied. Only neurons excited by both visceral and somatic thoracic afferent input were studied. Urinary bladder distension (UBD) inhibited 48 (50%), excited 6 (6%), and did not affect 41 (43%) of these neurons. Also, UBD inhibited the excitatory responses of these cells to noxious visceral and somatic stimuli. Hindlimb pinch also inhibited greater than 50% of the neurons. These data indicate that visceral and somatic afferent input to the lumbosacral spinal cord inhibits the activity of upper thoracic neurons. This inhibitory effect may play a role in localization of sensory and motor responses to noxious stimuli.


1999 ◽  
Vol 276 (2) ◽  
pp. H401-H412 ◽  
Author(s):  
Susan M. Barman ◽  
Gerard L. Gebber ◽  
Heather Kitchens

Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis were used to classify rostral dorsolateral pontine (RDLP) neurons into groups whose naturally occurring discharges were correlated to only the 10-Hz rhythm ( n = 29), to only the cardiac-related rhythm ( n = 15), and to both rhythms ( n = 15) in inferior cardiac sympathetic nerve discharge (SND) of urethan-anesthetized cats. Most of the neurons with activity correlated to only the cardiac-related rhythm were located medial to the other two groups of neurons. The firing rates of most RDLP neurons with activity correlated to only the 10-Hz rhythm (9 of 12) or both rhythms (7 of 8) were decreased during baroreceptor reflex-induced inhibition of SND produced by aortic obstruction; thus, they are presumed to be sympathoexcitatory. The firing rates of four of seven RDLP neurons with activity correlated to only the cardiac-related rhythm increased during baroreceptor reflex activation; thus, they may be sympathoinhibitory. We conclude that the RDLP contains a functionally heterogeneous population of neurons with sympathetic nerve-related activity. These neurons could not be antidromically activated by stimulation of the thoracic spinal cord.


2010 ◽  
Vol 298 (6) ◽  
pp. G934-G942 ◽  
Author(s):  
Chao Qin ◽  
Anna P. Malykhina ◽  
Ann M. Thompson ◽  
Jay P. Farber ◽  
Robert D. Foreman

Gastroesophageal reflux (GER) frequently triggers or worsens cardiac pain or symptoms in patients with coronary heart disease. This study aimed to determine whether GER enhances the activity of upper thoracic spinal neurons receiving noxious cardiac input. Gastric fundus and pyloric ligations as well as a longitudinal myelotomy at the gastroesophageal junction induced acute GER in pentobarbital-anesthetized, paralyzed, and ventilated male Sprague-Dawley rats. Manual manipulations of the stomach and lower esophagus were used as surgical controls in another group. At 4–9 h after GER surgery, extracellular potentials of single neurons were recorded from the T3 spinal segment. Intrapericardial bradykinin (IB) (10 μg/ml, 0.2 ml, 1 min) injections were used to activate cardiac nociceptors, and esophageal distensions were used to activate esophageal afferent fibers. Significantly more spinal neurons in the GER group responded to IB compared with the control group (69.1 vs. 38%, P < 0.01). The proportion of IB-responsive neurons in the superficial laminae of GER animals was significantly different from those in deeper layers (1/8 vs. 46/60, P < 0.01); no difference was found in control animals (7/25 vs. 20/46, P > 0.05). Excitatory responses of spinal neurons to IB in the GER group were greater than in the control group [32.4 ± 3.5 impulses (imp)/s vs. 13.3 ± 2.3 imp/s, P < 0.01]. Forty-five of 47 (95.7%) neurons responded to cardiac input and ED, which was higher than the control group (61.5%, P < 0.01). These results indicate that acute GER enhanced the excitatory responses of thoracic spinal neurons in deeper laminae of the dorsal horn to noxious cardiac stimulus.


1998 ◽  
Vol 80 (5) ◽  
pp. 2433-2445 ◽  
Author(s):  
Susan M. Barman ◽  
Gerard L. Gebber

Barman, Susan M. and Gerard L. Gebber. Classification of caudal ventrolateral pontine neurons with sympathetic nerve-related activity. J. Neurophysiol. 80: 2433–2445, 1998. This study was designed to answer three questions concerning caudal ventrolateral pontine (CVLP) neurons whose naturally occurring discharges are correlated to sympathetic nerve discharge (SND). 1) What are the proportions of CVLP neurons that have activity correlated to both the cardiac-related and 10-Hz rhythms in SND, to only the 10-Hz rhythm, and to only the cardiac-related rhythm? 2) Do CVLP neurons with activity correlated to the cardiac-related and/or 10-Hz rhythm in SND subserve a sympathoexcitatory or sympathoinhibitory function? 3) Do CVLP neurons with activity correlated to the cardiac-related and/or 10-Hz rhythm in SND project to the thoracic spinal cord? To address these issues we recorded from 476 CVLP neurons in 24 urethan-anesthetized cats. Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis revealed that the discharges of 66 of these neurons were correlated to inferior cardiac postganglionic SND. For 39 of these neurons, we were able to determine whether their discharges were correlated to one or both rhythms. The results showed that the CVLP contained a heterogeneous population of neurons with sympathetic nerve-related activity. The discharges of 21 neurons were correlated to both the 10-Hz and cardiac-related rhythms in SND, 9 neurons had activity correlated to only the 10-Hz rhythm, and 9 neurons had activity correlated to only the cardiac-related rhythm. The firing rates of CVLP neurons with activity correlated to both rhythms or to only the 10-Hz rhythm were decreased during the inhibition of SND induced by baroreceptor reflex activation (rapid obstruction of the abdominal aorta). These neurons are presumed to exert sympathoexcitatory actions. The time-controlled collision test verified that 11 of 12 CVLP neurons with activity correlated to both rhythms were antidromically activated by stimulation of the first thoracic segment of the spinal cord. Antidromic mapping at this level showed that the site requiring the least stimulus current to elicit the longest latency response (nearest the terminal) was in the vicinity of the intermediolateral nucleus (IML). In contrast, only 1 of 13 CVLP neurons with activity correlated to only one of the rhythms in SND could be antidromically activated by spinal stimulation. These data demonstrate for the first time that there is a direct pathway from the CVLP to the IML that is comprised almost exclusively of sympathoexcitatory neurons whose discharges are correlated to both the 10-Hz and cardiac-related rhythms in SND.


2009 ◽  
Vol 145 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Chao Qin ◽  
Marie L.M. Ghorbani ◽  
Mingyuan Wu ◽  
Jay P. Farber ◽  
Jianxing Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document