Postnatal development of receptive field surround inhibition in kitten dorsal lateral geniculate nucleus

1986 ◽  
Vol 56 (2) ◽  
pp. 523-541 ◽  
Author(s):  
J. S. Tootle ◽  
M. J. Friedlander

We recorded the responses to visual stimulation of single neurons in the A-layers of the dorsal lateral geniculate nucleus (LGNd) of 4- to 5-wk-old kittens and adult cats. Visual stimuli were generated on a cathode-ray tube (CRT) display and consisted of circular spots and annuli whose contrast was twice the threshold for each neuron and was modulated about a background luminance of 28 cd/m2 at 0.5 Hz. Neural responses were collected as interspike intervals and displayed as instantaneous firing rates for individual trials. From the responses to a series of sizes of spot stimuli, area-response functions were constructed and used to derive a quantitative measure of the strength of the receptive field (RF) surround inhibition of each neuron, the spatial density minimum ([SDmin[). To separate neural from optical factors that affect measurements of surround inhibition, published values for the posterior nodal distances of the kitten and adult eye were used to scale stimuli in terms of the retinal area subtended. Of 153 kitten and 95 adult LGNd neurons studied, the responses to a complete series of spot stimuli of different sizes (areas) were obtained for 52 kitten neurons [44 with linear spatial summation (L) and 8 with nonlinear spatial summation (NL)] and 45 adult (24 X-and 21 Y-) neurons. In addition, intracellular recordings were made from 30 of the kitten neurons that were filled iontophoretically with horseradish peroxidase (HRP) and were evaluated structurally. In the adult, neurons were classified as X-or Y-cells on the basis of a battery of physiological properties, including linearity of spatial summation, latency to electrical stimulation of the optic chiasm, and ability to respond reliably to rapidly moving stimuli. Kitten neuronal responses allowed them to be clearly identified as exhibiting linear or nonlinear spatial summation, but application of additional criteria produced ambiguous results for classification into X-or Y-categories. Kitten L or NL neurons showed differences typical of adult X-and Y-cells on some [e.g., RF center size (P less than 0.01)] but not other [e.g., latency to stimulation of optic chiasm (P greater than 0.40)] properties. In addition, by direct comparison of morphological features with these physiological responses, some kitten cells with adult X-cell physiological properties on these tests were found to have typical adult Y-cell somadendritic structure.(ABSTRACT TRUNCATED AT 400 WORDS)

1983 ◽  
Vol 50 (1) ◽  
pp. 240-264 ◽  
Author(s):  
S. C. Mangel ◽  
J. R. Wilson ◽  
S. M. Sherman

We measured response properties of X- and Y-cells from laminae A and A1 of the dorsal lateral geniculate nucleus of monocularly lid-sutured cats at 8, 12, 16, 24, and 52-60 wk of age. Visual stimuli consisted of small spots of light and vertically oriented sine-wave gratings counterphased at a rate of 2 cycles/s. In cats as young as 8 wk of age, nondeprived and deprived neurons could be clearly identified as X-cells or Y-cells with criteria previously established for adult animals. Nonlinear responses of Y-cells from 8- and 12-wk-old cats were often temporally labile; that is, the amplitude of the nonlinear response of nondeprived and deprived cells increased or decreased suddenly. A similar lability was not noted for the linear response component. This phenomenon rarely occurred in older cats. At 8 wk of age, Y-cell proportions (number of Y-cells/total number of cells) in nondeprived and deprived A-laminae were approximately equal. By 12 wk of age and thereafter, the proportion of Y-cells in deprived laminae was significantly lower than that in nondeprived laminae. At no age was there a systematic difference in response properties (spatial resolution, latency to optic chiasm stimulation, etc.) for Y-cells between deprived and nondeprived laminae. Spatial resolution, defined as the highest spatial frequency to which a cell would respond at a contrast of 0.6, was similar for nondeprived and deprived X-cells until 24 wk of age. In these and older cats, the mean spatial resolution of deprived X-cells was lower than that of nondeprived X-cells. This difference was noted first for lamina A1 at 24 wk of age and later for lamina A at 52-60 wk of age. The average latency of X-cells to optic chiasm stimulation was slightly greater in deprived laminae than in nondeprived laminae. No such difference was seen for Y-cells. Cells with poor and inconsistent responses were encountered infrequently but were observed far more often in deprived laminae than in nondeprived laminae. Lid suture appears to affect the development of geniculate X- and Y-cells in very different ways. Not only is the final pattern of abnormalities quite different between these cell groups, but the developmental dynamics of these abnormalities also differ.


2000 ◽  
Vol 17 (6) ◽  
pp. 855-870 ◽  
Author(s):  
O. RUKSENAS ◽  
I.T. FJELD ◽  
P. HEGGELUND

Spatial summation and degree of center-surround antagonism were examined in the receptive field of nonlagged cells in the dorsal lateral geniculate nucleus (dLGN). We recorded responses to stationary light or dark circular spots that were stepwise varied in width. The spots were centered on the receptive field. For a sample of nonlagged X-cells, we made simultaneous recordings of action potentials and S-potentials, and could thereby compare spatial summation in the dLGN cell and in the retinal input to the cell. Plots of response versus spot diameter showed that the response for a dLGN cell was consistently below the response in the retinal input at all spot sizes. There was a marked increase of antagonism at the retinogeniculate relay. The difference between the retinal input and dLGN cell response suggested that the direct retinal input to a relay cell is counteracted in dLGN by an inhibitory field that has an antagonistic center-surround organization. The inhibitory field seems to have the same center sign (ON- or OFF-center), but a wider receptive-field center than the direct retinal input to the relay cell. The broader center of the inhibitory field can explain the increased center-surround antagonism at the retinogeniculate relay. The ratio between the response of a dLGN cell and its retinal input (transfer ratio) varied with spot width. This variation did not necessarily reflect a nonlinearity at the retinogeniculate relay. Plots of dLGN cell response against retinal input were piecewise linear, suggesting that both excitatory and inhibitory transmission in dLGN are close to linear. The variation in transfer ratio could be explained by sustained suppression evoked by the background stimulation, because such suppression has relatively stronger effect on the response to a spot evoking weak response than to a spot evoking a strong response. A simple model for the spatial receptive-field organization of nonlagged X-cells, that is consistent with our findings, is presented.


2020 ◽  
Vol 124 (2) ◽  
pp. 404-417 ◽  
Author(s):  
Peter W. Campbell ◽  
Gubbi Govindaiah ◽  
Sean P. Masterson ◽  
Martha E. Bickford ◽  
William Guido

The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.


2017 ◽  
Vol 34 ◽  
Author(s):  
CHARLES L. COX ◽  
JOSEPH A. BEATTY

AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.


2000 ◽  
Vol 17 (6) ◽  
pp. 871-885 ◽  
Author(s):  
G.T. EINEVOLL ◽  
P. HEGGELUND

Spatial receptive fields of relay cells in dorsal lateral geniculate nucleus (dLGN) have commonly been modeled as a difference of two Gaussian functions. We present alternative models for dLGN cells which take known physiological couplings between retina and dLGN and within dLGN into account. The models include excitatory input from a single retinal ganglion cell and feedforward inhibition via intrageniculate interneurons. Mathematical formulas describing the receptive field and response to circular spot stimuli are found both for models with a finite and an infinite number of ganglion-cell inputs to dLGN neurons. The advantage of these models compared to the common difference-of-Gaussians model is that they, in addition to providing mathematical descriptions of the receptive fields of dLGN neurons, also make explicit contributions from the geniculate circuit. Moreover, the model parameters have direct physiological relevance and can be manipulated and measured experimentally. The discrete model is applied to recently published data (Ruksenas et al., 2000) on response versus spot-diameter curves for dLGN cells and for the retinal input to the cell (S-potentials). The models are found to account well for the results for the X-cells in these experiments. Moreover, predictions from the discrete model regarding receptive-field sizes of interneurons, the amount of center-surround antagonism for interneurons compared to relay cells, and distance between neighboring retinal ganglion cells providing input to interneurons, are all compatible with data available in the literature.


1984 ◽  
Vol 52 (5) ◽  
pp. 911-920 ◽  
Author(s):  
J. Frascella ◽  
S. Lehmkuhle

Extracellular responses of Y-cells in the A-laminae and in lamina C of the cat dorsal lateral geniculate nucleus were recorded and compared for several sine-wave grating presentations. Both spatial and temporal contrast sensitivity functions were determined for these cells as well as suprathreshold response functions at 0.2 and 0.4 contrast. Qualitatively, the responses of the lamina C Y-cells were very similar to Y-cells of the A-laminae; differences were of a quantitative nature. At threshold, lamina C Y-cells were more sensitive at all spatial and temporal frequencies tested. Suprathreshold results showed no major differences in fundamental response amplitude between laminar Y-cells. Interlaminar differences were found with respect to second harmonic response amplitude. Lamina C Y-cells gave the largest overall second harmonic response for all stimulus conditions. A trend was observed for these laminar Y-cells such that the second harmonic responses were highest for Y-cells of lamina C, intermediate for lamina A Y-cells, and lowest for those of lamina A1. Based on differences in projection pattern and present electrophysiological results, we conclude that the lamina C Y-cells may represent a population of cells that is distinct from A-laminae Y-cells. These lamina C Y-cells provide a significant input to visual cortex.


1989 ◽  
Vol 61 (1) ◽  
pp. 58-73 ◽  
Author(s):  
P. D. Spear ◽  
M. A. McCall ◽  
N. Tumosa

1. Previous studies have shown that rearing with monocular visual deprivation (MD) produces a loss of Y-cells and a reduction in spatial resolution among X-cells in layers A and A1 of the cat's dorsal lateral geniculate nucleus (dLGN). However, there have been no studies of the effects of visual deprivation on the function of the retinogeniculate W-cell pathway, which terminates in the C layers of the dLGN. It also is not known if Y-cells in the C layers are affected by MD in the same way as Y-cells in the A layers. These questions were addressed by the present experiment. 2. Single-cell recordings were made from the C layers of 5 normal adult cats (112 cells) and from the nondeprived (94 cells) and deprived (95 cells) C layers in 10 cats monocularly deprived by lid suture for 3-7 yr. The cells were classified as X, Y, or W on the basis of their receptive-field properties and responses to electrical stimulation of the optic chiasm. In addition, quantitative measures were made of responses to sine-wave gratings of different spatial frequencies. 3. Receptive-field organization, receptive-field center size, spatial and temporal linearity to counterphased sine-wave gratings, and latency to optic chiasm stimulation were similar for C-layer cells in normal cats and in the deprived and nondeprived layers of MD cats. On the basis of these properties, 23% of normal layer-C cells were classified as Y-cells and 72% were classified as W-cells. The Y-cells tended to be located in the magnocellular division of layer C and most (though not all) W-cells were in the parvocellular division. Normal layers C1 and C2 contained almost exclusively W cells. The incidence of Y and W cells was similar to normal in the nondeprived and deprived C-layers of MD cats. 4. In normal cats, W cells typically had the lowest amplitude first-harmonic (F1) response rates to drifting sine-wave gratings. However, many W cells gave quite brisk responses and, overall, there was no significant difference between F1 response amplitudes of Y and W cells. Response amplitudes of Y- and W-cells in the deprived and nondeprived C-layers of MD cats were not significantly different from normal. 5. Normal Y- and W-cells tended to have low optimal spatial frequencies (0.2 c/deg or lower) and spatial resolutions (generally 0.4-1.6 c/deg) to drifting sine-wave gratings.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document