2-Deoxyglucose–Induced Long-Term Potentiation in CA1 Is Not Prevented by Intraneuronal Chelator

2000 ◽  
Vol 83 (1) ◽  
pp. 177-180 ◽  
Author(s):  
Yong-Tao Zhao ◽  
Krešimir Krnjević

In hippocampal slices, temporary (10–20 min) replacement of glucose with 10 mM 2-deoxyglucose is followed by marked and very sustained potentiation of EPSPs (2-DG LTP). To investigate its mechanism, we examined 2-DG's effect in CA1 neurons recorded with sharp 3 M KCl electrodes containing a strong chelator, 50 or 100 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid (EGTA). In most cases, field EPSPs were simultaneously recorded and conventional LTP was also elicited in some cells by tetanic stimulation of stratum radiatum. 2-DG potentiated intracellular EPSP slopes by 48 ± 5.1% (SE) in nine cells recorded with plain KCl electrodes and by 52 ± 6.2% in seven cells recorded with EGTA-containing electrodes. In four of the latter cells, tetanic stimulation (twice 100 Hz for 1 s) failed to evoke LTP (2 ± 1.1%), although field EPSPs were clearly potentiated (by 28 ± 6.9%). Thus unlike tetanic LTP, 2-DG LTP is not readily prevented by postsynaptic intraneuronal injection of EGTA. These findings agree with other evidence that the rise in postsynaptic (somatic) [Ca2+]i caused by 2-DG is not the principal trigger for the subsequent 2-DG LTP and that it may be a purely presynaptic phenomenon.

1991 ◽  
Vol 555 (1) ◽  
pp. 112-122 ◽  
Author(s):  
Satoshi Fujii ◽  
Kazuo Saito ◽  
Hiroyoshi Miyakawa ◽  
Ken-ichi Ito ◽  
Hiroshi Kato

1988 ◽  
Vol 66 (6) ◽  
pp. 841-844 ◽  
Author(s):  
B. R. Sastry ◽  
J. W. Goh ◽  
P. B. Y. May ◽  
S. S. Chirwa

In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potentiation of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.


2003 ◽  
Vol 358 (1432) ◽  
pp. 689-693 ◽  
Author(s):  
Toshiyuki Hosokawa ◽  
Masaki Ohta ◽  
Takeshi Saito ◽  
Alan Fine

Spatio-temporal patterns of neuronal activity before and after the induction of long-term potentiation in mouse hippocampal slices were studied using a real-time high-resolution optical recording system. After staining the slices with voltage-sensitive dye, transmitted light images and extracellular field potentials were recorded in response to stimuli applied to CA1 stratum radiatum. Optical and electrical signals in response to single test pulses were enhanced for at least 30 minutes after brief high-frequency stimulation at the same site. In two-pathway experiments, potentiation was restricted to the tetanized pathway. The optical signals demonstrated that both the amplitude and area of the synaptic response were increased, in patterns not predictable from the initial, pretetanus, pattern of activation. Optical signals will be useful for investigating spatio-temporal patterns of synaptic enhancement underlying information storage in the brain.


1999 ◽  
Vol 6 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Min Zhuo ◽  
Jarmo T. Laitinen ◽  
Xiao-Ching Li ◽  
Robert D. Hawkins

Perfusion of hippocampal slices with an inhibitor nitric oxide (NO) synthase blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.


1999 ◽  
Vol 81 (1) ◽  
pp. 174-183 ◽  
Author(s):  
S. Tekkök ◽  
I. Medina ◽  
K. Krnjević

Tekkök, S., I. Medina, and K. Krnjević. Intraneuronal [Ca2+] changes induced by 2-deoxy-d-glucose in rat hippocampal slices. J. Neurophysiol. 81: 174–183, 1999. Temporary replacement of glucose by 2-deoxyglucose (2-DG; but not sucrose) is followed by long-term potentiation of CA1 synaptic transmission (2-DG LTP), which is Ca2+-dependent and is prevented by dantrolene or N-methyl-d-aspartate (NMDA) antagonists. To clarify the mechanism of action of 2-DG, we monitored [Ca2+]i while replacing glucose with 2-DG or sucrose. In slices (from Wistar rats) kept submerged at 30°C, pyramidal neurons were loaded with [Ca2+]-sensitive fluo-3 or Fura Red. The fluorescence was measured with a confocal microscope. Bath applications of 10 mM 2-DG (replacing glucose for 15 ± 0.38 min, means ± SE) led to a rapid but reversible rise in fluo-3 fluorescence (or drop of Fura Red fluorescence); the peak increase of fluo-3 fluorescence (Δ F/ F 0), measured near the end of 2-DG applications, was by 245 ± 50% ( n = 32). Isosmolar sucrose (for 15–40 min) had a smaller but significant effect (Δ F/ F 0 = 94 ± 14%, n = 10). The 2-DG–induced Δ F/ F 0 was greatly reduced (to 35 ± 15%, n = 16) by d,l-aminophosphono-valerate (50–100 μM) and abolished by 10 μM dantrolene (−4.0 ± 2.9%, n = 11). A substantial, although smaller effect, of 2-DG persisted in Ca2+-free 1 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid (EGTA) medium. Two adenosine antagonists, which do not prevent 2-DG LTP, were also tested; 2-DG–induced Δ F/ F 0 (fluo-3) was not affected by the A1 antagonist 8-cyclopentyl-3,7-dihydro-1,3-dipropyl-1H-purine-2,6-dione (DPCPX 50 nM; 287 ± 38%; n = 20), but it was abolished by the A1/A2 antagonist 8-SPT; 25 ± 29%, n = 19). These observations suggest that 2-DG releases glutamate and adenosine and that the rise in [Ca2+] may be triggered by a synergistic action of glutamate (acting via NMDA receptors) and adenosine (acting via A2b receptors) resulting in Ca2+ release from a dantrolene-sensitive store. The discrepant effects of sucrose and 8-SPT on Δ F/ F 0, on the one hand, and 2-DG LTP, on the other, support other evidence that increases in postsynaptic [Ca2+]i are not essential for 2-DG LTP.


1994 ◽  
Vol 72 (4) ◽  
pp. 2034-2040 ◽  
Author(s):  
J. M. Auerbach ◽  
M. Segal

1. We studied long-term cholinergic effects on synaptic transmission in submerged hippocampal slices using intra- and extracellular recording techniques. 2. Bath application of submicromolar concentrations of carbachol (CCh) produced a gradually developing, long-lasting increase in the CA1 excitatory postsynaptic potential and population spike. This potentiation was blocked by atropine and, hence, named muscarinic long-term potentiation (LTPm). Application of DL-2-amino-5-phosphonovaleric acid had no effect on LTPm, indicating that this phenomenon is N-methyl-D-aspartate receptor independent. 3. These effects of CCh were not likely to be due to the blockade of one of several K+ conductances by the drug; the time and concentration dependence of LTPm were different from those associated with cholinergic blockade of K+ conductances. 4. Removal of extracellular calcium (Cao2+) from the bath blocked synaptic transmission. CCh added in calcium-free medium induced LTPm, which was revealed upon removal of the drug by washing with normal calcium-containing medium. Neither cutting CA1-CA3 connections nor cessation of synaptic stimulation interfered with LTPm induction. 5. Application of thapsigargin or H-7 together with CCh blocked LTPm, suggesting the involvement of intracellular calcium (Cai2+) stores and protein kinases, respectively, in the LTPm mechanism. 6. Subthreshold cholinergic stimulation coupled with subthreshold tetanic stimulation caused LTP. CCh had no effect when administered after the LTP mechanism had been saturated by repeated suprathreshold tetani. Tetanic stimulation failed to cause LTP when applied after LTPm had been induced by CCh. These experiments indicate that tetanus-induced potentiation and LTPm share a common mechanism and provide a direct link between ACh and mechanisms of synaptic plasticity.


1998 ◽  
Vol 5 (6) ◽  
pp. 467-480
Author(s):  
Min Zhuo ◽  
Jarmo T. Laitinen ◽  
Xiao-Ching Li ◽  
Robert D. Hawkins

Perfusion of hippocampal slices with an inhibitor of nitric oxide (NO) synthase-blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.


Sign in / Sign up

Export Citation Format

Share Document