optical recording
Recently Published Documents


TOTAL DOCUMENTS

1811
(FIVE YEARS 55)

H-INDEX

56
(FIVE YEARS 3)

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Olusayo Olubosede ◽  
Mohd Amiruddin Abd Rahman ◽  
Abdullah Alqahtani ◽  
Miloud Souiyah ◽  
Mouftahou B. Latif ◽  
...  

Zinc selenide (ZnSe) nanomaterial is a binary semiconducting material with unique features, such as high chemical stability, high photosensitivity, low cost, great excitation binding energy, non-toxicity, and a tunable direct wide band gap. These characteristics contribute significantly to its wide usage as sensors, optical filters, photo-catalysts, optical recording materials, and photovoltaics, among others. The light energy harvesting capacity of this material can be enhanced and tailored to meet the required application demand through band gap tuning with compositional modulation, which influences the nano-structural size, as well as the crystal distortion of the semiconductor. This present work provides novel ways whereby the wide energy band gap of zinc selenide can be effectively modulated and tuned for light energy harvesting capacity enhancement by hybridizing a support vector regression algorithm (SVR) with a genetic algorithm (GA) for parameter combinatory optimization. The effectiveness of the SVR-GA model is compared with the stepwise regression (SPR)-based model using several performance evaluation metrics. The developed SVR-GA model outperforms the SPR model using the root mean square error metric, with a performance improvement of 33.68%, while a similar performance superiority is demonstrated by the SVR-GA model over the SPR using other performance metrics. The intelligent zinc selenide energy band gap modulation proposed in this work will facilitate the fabrication of zinc selenide-based sensors with enhanced light energy harvesting capacity at a reduced cost, with the circumvention of experimental stress.


2021 ◽  
Author(s):  
Walther Akemann ◽  
Sébastien Wolf ◽  
Vincent Villette ◽  
Benjamin Mathieu ◽  
Astou Tangara ◽  
...  

2021 ◽  
Vol 2119 (1) ◽  
pp. 012077
Author(s):  
A V Kokorin ◽  
A D Nazarov ◽  
A F Serov

Abstract This paper presents the results of an experimental study of the dynamics of evaporation of nanofluid droplets based on distilled water with a mass concentration of SiO2 nanoparticles of 0.1%, 0.5%, and 7% lying on a metal surface. The drop height was changed over time using original equipment, which is based on an integrated approach to the combined use of capacitive and optical recording methods. The experimental results show that the change in the height of nanofluid droplets with concentrations of 0.1%, 0.5%, and 7% is linear over the main part of the evaporation time interval. A deviation from the linear law is observed at the final stage, at the time interval of complete evaporation. The time for complete evaporation of droplets of nanofluids with a concentration of 0.1% increases by 20%, for droplets with a concentration of 0.5%, it increased by 28% in comparison with the evaporation of droplets of the base liquid. The particle concentration of 7% does not lead to an increase in the evaporation time of droplets in comparison with the evaporation of low concentration droplets. Before the formation of a jelly-like residue of nanoparticles, the evaporation rate of droplets with a particle concentration of 7% is comparable to the evaporation rate of droplets with a concentration of 0.1%.


2021 ◽  
Vol 22 (19) ◽  
pp. 10789
Author(s):  
Ajay Kesharwani ◽  
Karin Schwarz ◽  
Ekta Dembla ◽  
Mayur Dembla ◽  
Frank Schmitz

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5953
Author(s):  
Leslie Barreto ◽  
Ahnsei Shon ◽  
Derrick Knox ◽  
Hojun Song ◽  
Hangue Park ◽  
...  

(1) Background: Insects, which serve as model systems for many disciplines with their unique advantages, have not been extensively studied in gait research because of the lack of appropriate tools and insect models to properly study the insect gaits. (2) Methods: In this study, we present a gait analysis of grasshoppers with a closed-loop custom-designed motorized insect treadmill with an optical recording system for quantitative gait analysis. We used the eastern lubber grasshopper, a flightless and large-bodied species, as our insect model. Gait kinematics were recorded and analyzed by making three grasshoppers walk on the treadmill with various speeds from 0.1 to 1.5 m/s. (3) Results: Stance duty factor was measured as 70–95% and decreased as walking speed increased. As the walking speed increased, the number of contact legs decreased, and diagonal arrangement of contact was observed at walking speed of 1.1 cm/s. (4) Conclusions: This pilot study of gait analysis of grasshoppers using the custom-designed motorized insect treadmill with the optical recording system demonstrates the feasibility of quantitative, repeatable, and real-time insect gait analysis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Wanhui Sheng ◽  
Scott W Harden ◽  
Yalun Tan ◽  
Eric G Krause ◽  
Charles J Frazier

Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes, however activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.


2021 ◽  
pp. 100007
Author(s):  
Asaf Grupi ◽  
Zehavit Shapira ◽  
Shimon Yudovich ◽  
Nurit Degani-Katzav ◽  
Shimon Weiss

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ana C Sias ◽  
Ashleigh K Morse ◽  
Sherry Wang ◽  
Venuz Y Greenfield ◽  
Caitlin M Goodpaster ◽  
...  

Adaptive reward-related decision making often requires accurate and detailed representation of potential available rewards. Environmental reward-predictive stimuli can facilitate these representations, allowing one to infer which specific rewards might be available and choose accordingly. This process relies on encoded relationships between the cues and the sensory-specific details of the reward they predict. Here we interrogated the function of the basolateral amygdala (BLA) and its interaction with the lateral orbitofrontal cortex (lOFC) in the ability to learn such stimulus-outcome associations and use these memories to guide decision making. Using optical recording and inhibition approaches, Pavlovian cue-reward conditioning, and the outcome-selective Pavlovian-to-instrumental transfer (PIT) test in male rats, we found that the BLA is robustly activated at the time of stimulus-outcome learning and that this activity is necessary for sensory-specific stimulus-outcome memories to be encoded, so they can subsequently influence reward choices. Direct input from the lOFC was found to support the BLA in this function. Based on prior work, activity in BLA projections back to the lOFC was known to support the use of stimulus-outcome memories to influence decision making. By multiplexing optogenetic and chemogenetic inhibition we performed a serial circuit disconnection and found that the lOFCàBLA and BLAàlOFC pathways form a functional circuit regulating the encoding (lOFCàBLA) and subsequent use (BLAàlOFC) of the stimulus-dependent, sensory-specific reward memories that are critical for adaptive, appetitive decision making.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Wang ◽  
Asuka Miura ◽  
Rajkumar Modak ◽  
Yukiko K. Takahashi ◽  
Ken-ichi Uchida

AbstractThe introduction of spin caloritronics into thermoelectric conversion has paved a new path for versatile energy harvesting and heat sensing technologies. In particular, thermoelectric generation based on the anomalous Nernst effect (ANE) is an appealing approach as it shows considerable potential to realize efficient, large-area, and flexible use of heat energy. To make ANE applications viable, not only the improvement of thermoelectric performance but also the simplification of device structures is essential. Here, we demonstrate the construction of an anomalous Nernst thermopile with a substantially enhanced thermoelectric output and simple structure comprising a single ferromagnetic material. These improvements are achieved by combining the ANE with the magneto-optical recording technique called all-optical helicity-dependent switching of magnetization. Our thermopile consists only of Co/Pt multilayer wires arranged in a zigzag configuration, which simplifies microfabrication processes. When the out-of-plane magnetization of the neighboring wires is reversed alternately by local illumination with circularly polarized light, the ANE-induced voltage in the thermopile shows an order of magnitude enhancement, confirming the concept of a magneto-optically designed anomalous Nernst thermopile. The sign of the enhanced ANE-induced voltage can be controlled reversibly by changing the light polarization. The engineering concept demonstrated here promotes effective utilization of the characteristics of the ANE and will contribute to realizing its thermoelectric applications.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alison S. Walker ◽  
Benjamin K. Raliski ◽  
Kaveh Karbasi ◽  
Patrick Zhang ◽  
Kate Sanders ◽  
...  

The ability to optically record dynamics of neuronal membrane potential promises to revolutionize our understanding of neurobiology. In this study, we show that the far-red voltage sensitive fluorophore, Berkeley Red Sensor of Transmembrane potential-1, or BeRST 1, can be used to monitor neuronal membrane potential changes across dozens of neurons at a sampling rate of 500 Hz. Notably, voltage imaging with BeRST 1 can be implemented with affordable, commercially available illumination sources, optics, and detectors. BeRST 1 is well-tolerated in cultures of rat hippocampal neurons and provides exceptional optical recording fidelity, as judged by dual fluorescence imaging and patch-clamp electrophysiology. We developed a semi-automated spike-picking program to reduce user bias when calling action potentials and used this in conjunction with BeRST 1 to develop an optical spike and connectivity analysis (OSCA) for high-throughput dissection of neuronal activity dynamics. The high temporal resolution of BeRST 1 enables dissection of firing rate changes in response to acute, pharmacological interventions with commonly used inhibitors like gabazine and picrotoxin. Over longer periods of time, BeRST 1 also tracks chronic perturbations to neurons exposed to amyloid beta 1–42 (Aβ 1–42), revealing modest changes to spiking frequency but profound changes to overall network connectivity. Finally, we use OSCA to track changes in neuronal connectivity during maturation in culture, providing a functional readout of network assembly. We envision that use of BeRST 1 and OSCA described here will be of use to the broad neuroscience community.


Sign in / Sign up

Export Citation Format

Share Document