ca1 area
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 54)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Luis Fernando Cobar ◽  
Alireza Kashef ◽  
Krishnashish Bose ◽  
Ayumu Tashiro

AbstractElectrical and optical monitoring of neural activity is major approaches for studying brain functions. Each has its own set of advantages and disadvantages, such as the ability to determine cell types and temporal resolution. Although opto-electrical bimodal recording is beneficial by enabling us to exploit the strength of both approaches, it has not been widely used. In this study, we devised three methods of bimodal recording from a deep brain structure in awake head-fixed mice by chronically implanting a gradient-index (GRIN) lens and electrodes. First, we attached four stainless steel electrodes to the side of a GRIN lens and implanted them in a mouse expressing GCaMP6f in astrocytes. We simultaneously recorded local field potential (LFP) and GCaMP6f signal in astrocytes in the hippocampal CA1 area. Second, implanting a silicon probe electrode mounted on a custom-made microdrive within the focal volume of a GRIN lens, we performed bimodal recording in the CA1 area. We monitored LFP and fluorescent changes of GCaMP6s-expressing neurons in the CA1. Third, we designed a 3D-printed scaffold to serve as a microdrive for a silicon probe and a holder for a GRIN lens. This scaffold simplifies the implantation process and makes it easier to place the lens and probe accurately. Using this method, we recorded single unit activity and LFP electrically and GCaMP6f signals of single neurons optically. Thus, we show that these opto-electrical bimodal recording methods using a GRIN lens and electrodes are viable approaches in awake head-fixed mice.


Author(s):  
Xing Jun Jiang ◽  
Yan Qing Wu ◽  
Rong Ma ◽  
Yan Min Chang ◽  
Lu Lu Li ◽  
...  

As a primary cause of dementia and death in older people, Alzheimer’s disease (AD) has become a common problem and challenge worldwide. Abnormal accumulation of tau proteins in the brain is a hallmark pathology of AD and is closely related to the clinical progression and severity of cognitive deficits. Here, we found that overexpression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) effectively promoted the degradation of tau, thereby rescuing neuron loss, synaptic damage, and cognitive impairments in a mouse model of tauopathy with AAV-full-length human Tau (hTau) injected into the hippocampal CA1 area (hTau mice). Overexpression of PINK1 activated autophagy, and chloroquine but not MG132 reversed the PINK1-induced decrease in human Tau levels and cognitive improvement in hTau mice. Furthermore, PINK1 also ameliorated mitochondrial dysfunction induced by hTau. Taken together, our data revealed that PINK1 overexpression promoted degradation of abnormal accumulated tau via the autophagy–lysosome pathway, indicating that PINK1 may be a potential target for AD treatment.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7387
Author(s):  
Elena I. Zakharova ◽  
Andrey T. Proshin ◽  
Mikhail Y. Monakov ◽  
Alexander M. Dudchenko

We have previously suggested a key role of the hippocampus in the preconditioning action of moderate hypobaric hypoxia (HBH). The preconditioning efficiency of HBH is associated with acoustic startle prepulse inhibition (PPI). In rats with PPI > 40%, HBH activates the cholinergic projections of hippocampus, and PNU-282987, a selective agonist of α7 nicotinic receptors (α7nAChRs), reduces the HBH efficiency and potentiating effect on HBH of its solvent dimethyl sulfoxide (DMSO, anticholinesterase agent) when administered intraperitoneally. In order to validate the hippocampus as a key structure in the mechanism of hypoxic preconditioning and research a significance of α7nAChR activation in the hypoxic preconditioning, we performed an in vivo pharmacological study of intrahippocampal injections of PNU-282987 into the CA1 area on HBH efficiency in rats with PPI ≥ 40%. We found that PNU-282987 (30 μM) reduced HBH efficiency as with intraperitoneal administration, while DMSO (0.05%) still potentiated this effect. Thus, direct evidence of the key role of the hippocampus in the preconditioning effect of HBH and some details of this mechanism were obtained in rats with PPI ≥ 40%. The activation of α7nAChRs is not involved in the cholinergic signaling initiated by HBH or DMSO via any route of administration. Possible ways of the potentiating action of DMSO on HBH efficiency and its dependence on α7nAChRs are discussed.


2021 ◽  
Vol 20 (9) ◽  
pp. 1909-1914
Author(s):  
Linhua Xiang ◽  
Rong Wu ◽  
Kangling Liu ◽  
Jing Wang

Purpose: To study the protective effect of oxytocin on hypoxic-ischemic brain neuron injury in neonatal rats, and the mechanism of action involved.Methods: Hippocampal slices from neonatal SD rats were cultured in oxygen/glucose-deprived (OGD) solution, leading to establishment of hypoxic-ischemic model of hippocampal slices in vitro. The slices were assigned to 3 groups: control (ACSF solution), model (OGD solution), and oxytocin (OGD solution + 1 μM oxytocin). The effect of oxytocin on vertebral neurons in hippocampal CA1 region of HIBD rats was determined using TOPRO-3 staining, while the effects of oxytocin on hypoxic depolarization (AD) and inhibitory postsynaptic currents (iPSCs) were measured by cell patch clamp technique.Results: The fluorescence intensity of vertebral lamina in hippocampal CA1 area of model group was significantly higher than that of control group, while the corresponding value for oxytocin group was significantly lower than that of model group (p < 0.05). The time lapse before occurrence of AD in hippocampal CA1 area was significantly longer in oxytocin group than in model group, while the time lapse before neuronal AD in oxytocin receptor antagonist group was lower than that in oxytocin group. The frequency and amplitude of iPSCs in oxytocin group were markedly higher than the corresponding control values.Conclusion: Oxytocin exerts protective effect against hypoxic-ischemic brain neuronal damage in neonatal rats by regulating the activation of oxytocin receptor and GABA receptor, and inhibiting nerve transmission. These findings may be of benefit in the development of a suitable therapy for HIBD.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jan L Klee ◽  
Bryan C Souza ◽  
Francesco P Battaglia

The ability to use sensory cues to inform goal directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning dependent changes at the single cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWR) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.


2021 ◽  
Vol 27 (4) ◽  
pp. 405-409
Author(s):  
Min Lin

ABSTRACT Objective: The paper uses artificial neural network images to explore the effects of aerobic exercise on the gamma rhythm of theta period in the awake hippocampal CA1 area of APP/PS1/tau mice and the low-frequency gamma rhythm of the sleep state hippocampal CA1 area SWR period. Methods: Clean grade 6-month-old APP/PS1/tau mice were randomly divided into quiet group (AS) and exercise group (AE), C57BL/6J control group mice were randomly divided into quiet group (CS) and exercise group (CE). The AE group and the CE group performed 12-week treadmill exercise, 5d/week, 60min/d, the first 10min exercise load was 12m/min, the last 50min was 15m/min treadmill slope was 0°. Eight-arm maze detection of behavioral changes in mice; multi-channel in vivo recording technology to record the electrical signals of the awake state and sleep state in the hippocampal CA1 area, MATLAB extracts the awake state theta period and sleep state SWR period, multi-window spectrum estimation method Perform time-frequency analysis and power spectral density analysis. Results: 12 weeks of aerobic exercise can significantly improve the working memory and reference memory of the AS group, increase the gamma energy in theta period of the awake hippocampus CA1 area and the low-frequency gamma energy in the sleep state CA1 area SWR period. Conclusions: Aerobic exercise can improve the neural network state of the AD model and increase the gamma energy in theta period of the hippocampus CA1 area, and the low-frequency gamma energy in the SWR period is one of the neural network mechanisms for its overall behavioral improvement. Level of evidence II; Therapeutic studies - investigation of treatment results.


Author(s):  
Ramanan Ganeshan ◽  
Manja Betz ◽  
Jan F. Scheitz ◽  
Hebun Erdur ◽  
Heinrich J. Audebert ◽  
...  

Abstract Background and purpose To determine the frequency and distribution pattern of acute DWI lesions outside the hippocampus in patients clinically presenting with Transient Global Amnesia (TGA). Methods Consecutive patients clinically presenting with TGA between January 2010 and January 2017 admitted to our hospital were retrospectively evaluated. All patients fulfilled diagnostic criteria of TGA. We analyzed imaging and clinical data of all patients undergoing MRI with high-resolution diffusion-weighted imaging within 72 h from symptom onset. Results A total of 126 cases were included into the study. Fifty-three percent (n = 71/126) presented with one or more acute lesions in hippocampal CA1-area. Additional acute DWI lesions in other cortical regions were found in 11% (n = 14/126). All patients with DWI lesions outside the hippocampus presented with neurological symptoms typical for TGA (without additional symptoms.) Conclusions In a relevant proportion of clinical TGA patients, MRI reveals acute ischemic cerebral lesions. Therefore, cerebral MRI should be performed in patients with TGA to identify a possible cardiac involvement and to detect stroke chameleons.


Sign in / Sign up

Export Citation Format

Share Document