Discharge Properties of Neurons in the Rostral Superior Colliculus of the Monkey During Smooth-Pursuit Eye Movements

2000 ◽  
Vol 84 (2) ◽  
pp. 876-891 ◽  
Author(s):  
Richard J. Krauzlis ◽  
Michele A. Basso ◽  
Robert H. Wurtz

The intermediate and deep layers of the monkey superior colliculus (SC) comprise a retinotopically organized map for eye movements. The rostral end of this map, corresponding to the representation of the fovea, contains neurons that have been referred to as “fixation cells” because they discharge tonically during active fixation and pause during the generation of most saccades. These neurons also possess movement fields and are most active for targets close to the fixation point. Because the parafoveal locations encoded by these neurons are also important for guiding pursuit eye movements, we studied these neurons in two monkeys as they generated smooth pursuit. We found that fixation cells exhibit the same directional preferences during pursuit as during small saccades—they increase their discharge during movements toward the contralateral side and decrease their discharge during movements toward the ipsilateral side. This pursuit-related activity could be observed during saccade-free pursuit and was not predictive of small saccades that often accompanied pursuit. When we plotted the discharge rate from individual neurons during pursuit as a function of the position error associated with the moving target, we found tuning curves with peaks within a few degrees contralateral of the fovea. We compared these pursuit-related tuning curves from each neuron to the tuning curves for a saccade task from which we separately measured the visual, delay, and peri-saccadic activity. We found the highest and most consistent correlation with the delay activity recorded while the monkey viewed parafoveal stimuli during fixation. The directional preferences exhibited during pursuit can therefore be attributed to the tuning of these neurons for contralateral locations near the fovea. These results support the idea that fixation cells are the rostral extension of the buildup neurons found in the more caudal colliculus and that their activity conveys information about the size of the mismatch between a parafoveal stimulus and the currently foveated location. Because the generation of pursuit requires a break from fixation, the pursuit-related activity indicates that these neurons are not strictly involved with maintaining fixation. Conversely, because activity during the delay period was found for many neurons even when no eye movement was made, these neurons are also not obligatorily related to the generation of a movement. Thus the tonic activity of these rostral neurons provides a potential position-error signal rather than a motor command—a principle that may be applicable to buildup neurons elsewhere in the SC.

2001 ◽  
Vol 86 (5) ◽  
pp. 2629-2633 ◽  
Author(s):  
Richard J. Krauzlis

The intermediate and deep layers of the monkey superior colliculus (SC) are known to be important for the generation of saccadic eye movements. Recent studies have also provided evidence that the rostral SC might be involved in the control of pursuit eye movements. However, because rostral SC neurons respond to visual stimuli used to guide pursuit, it is also possible that the pursuit-related activity is simply a visual response. To test this possibility, we recorded the activity of neurons in the rostral SC as monkeys smoothly pursued a target that was briefly extinguished. We found that almost all rostral SC neurons in our sample maintained their pursuit-related activity during a brief visual blink, which was similar to the maintained activity they also exhibited during blinks imposed during fixation. These results indicate that discharge of rostral SC neurons during pursuit is not simply a visual response, but includes extraretinal signals.


2011 ◽  
Vol 106 (2) ◽  
pp. 690-703 ◽  
Author(s):  
Xiaobing Li ◽  
Michele A. Basso

Shifts in the location of spatial attention produce increases in the gain and sensitivity of neuronal responses to sensory stimuli. Cues to shift the line of sight have the same effect on sensory responses in a motor area involved in the control of eye movements, the superior colliculus. Evidence has shown that shifts of gaze and shifts of attention are linked, suggesting there may be similar underlying mechanisms. Here, we report on a novel way in which cues to move the eyes (top-down signals) can influence sensory responses of neurons by altering the variability of their discharge rate. We measured the spatial tuning of superior colliculus neuronal activity in trials with cues to either make or withhold saccadic eye movements. We found that tuning curve widths both increased and decreased, but that the information conveyed by the neuronal discharge about the stimulus increased with a cue to make a saccade. The increase in information resulted partly from a decrease in trial-to-trial variability of neuronal discharges for stimuli located at the flanks of the tuning curves rather than from increases in the discharge rate for stimuli located at the peak of the tuning curves. This result is consistent with theoretical work and provides a novel way for cognitive signals to influence sensory responses within motor regions of the brain.


2000 ◽  
Vol 84 (2) ◽  
pp. 892-908 ◽  
Author(s):  
Michele A. Basso ◽  
Richard J. Krauzlis ◽  
Robert H. Wurtz

Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.


2009 ◽  
Vol 101 (5) ◽  
pp. 2693-2707 ◽  
Author(s):  
Jin Yang ◽  
Stephen G. Lisberger

We have asked how sensory adaptation is represented in the response of a population of visual motion neurons and whether the neural adaptation could drive behavioral adaptation. Our approach was to evaluate the effects of about 10 s of motion adaptation on both smooth-pursuit eye movements and the responses of neuron populations in extrastriate middle temporal visual area (MT) in awake monkeys. Stimuli for neural recordings consisted of patches of 100% correlated dot textures. There was a wide range of effects across neurons, but on average adaptation reduced the amplitude and width of the direction tuning curves of MT neurons, without large changes in the preferred direction. The effects were greatest when the direction of the adapting stimulus corresponded to the preferred direction of the MT neuron under study. Adaptation also reduced the amplitude of speed-tuning curves, again with the greatest effect when the adapting speed was equal to the preferred speed. The adapted tuning curves were shifted toward lower preferred speeds as the adapting speed increased. We constructed populations of model MT neurons based on our experimental sample and showed that the effects of adaptation on the direction and speed of pursuit eye movements were predicted when a variant of vector averaging decoded the responses of a subset of the neural population. We conclude that the effects of motion adaptation on the responses of MT neurons can support behavioral adaptation in pursuit eye movements.


2018 ◽  
Author(s):  
Antimo Buonocore ◽  
Julianne Skinner ◽  
Ziad M. Hafed

AbstractThe oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer-lasting than saccadic eye movements, and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory open-loop interval, in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view runs directly contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here we show that smooth pursuit initiation is sensitive to visual inputs, even in “open-loop” intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements, and we injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence, and even during “open-loop” pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backwards errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like well-known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals, and that catch-up saccade generation is reset after a visual transient.


2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


Sign in / Sign up

Export Citation Format

Share Document