error signal
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 63)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 20 (3) ◽  
pp. 496-502
Author(s):  
Carlos Trejo ◽  
Xochitl Maya ◽  
Rene Martinez ◽  
Gabriel Sanchez ◽  
Hector Perez ◽  
...  

2022 ◽  
Vol 14 (4) ◽  
pp. 51-58
Author(s):  
A. Zolnikova ◽  
Svetlana Evdokimova ◽  
O. Oksyuta ◽  
Natal'ya Panina ◽  
Maksim Solodilov

The paper considers methods of increasing the durability of radio-electronic equipment in space, namely, methods of detecting and correcting errors during the action of the HCP. Currently, redundancy methods are used to ensure durability, when two or three processors work in parallel in the system, and a special node compares the results of their work. If the results do not match, an error signal will be generated, and the system will begin to perform actions to correct it. The article describes and classifies the main circuit, structural-functional, algorithmic methods for detecting and correcting errors. It is shown that circuit solutions lead to an increase in the crystal area. Therefore, the problem arises of ensuring radiation resistance with a minimum increase in the crystal area.


Author(s):  
Tianli Wei ◽  
Dewei Wu ◽  
Qiang Miao ◽  
Chunyan Yang

Abstract Entanglement has attracted great attention in the past few decades due to its potential applications in the field of quantum information protocols. From now, achieving excellent phase locking in entanglement generation is significant yet a challenging task in cryogenic quantum technology. In this work, we propose and demonstrate a comprehensive paradigm of phase locking protocol for quadrature entanglement at the microwave wavelengths. We carry out a theoretical derivation of the quadrature entangled microwaves generated based on Josephson Parametric Amplifiers (JPAs), and the phase locking error signal, which is used to lock the relative phase of zero between the two quadrature squeezed microwaves. Simulating data for the phase locking scheme are shown under different parameter settings for comparison. Finally, we use the proposed phase locking scheme to enable a stable output of quadrature entangled microwave.


2021 ◽  
Vol 2067 (1) ◽  
pp. 012003
Author(s):  
V I Yudin ◽  
M Yu Basalaev ◽  
A V Taichenachev ◽  
D A Radnatarov ◽  
V A Andryushkov ◽  
...  

Abstract For the resonance of coherent population trapping (CPT), we show that in the case of a spatially inhomogeneous light shift (for example, due to the Gaussian transversal profile of the light beam intensity), the zero position of the error signal, formed by the use of phase-jump technique, depends on the integration time of the spectroscopic signal. Basing on this effect, we propose two-loop method to stabilize the microwave power at the point where the light shift vanishes.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6790
Author(s):  
Daniel Wachowiak

Properties of state observers depend on proper gains selection. Each method of state estimation may require the implementation of specific techniques of finding those gains. The aim of this study is to propose a universal method of automatic gains selection and perform its verification on an induction machine speed observer. The method utilizes a genetic algorithm with fitness function which is directly based on the impulse response of the observer. System identification using least-squares estimation is implemented to determine the dynamic properties of the observer based on the estimation error signal. The influence of sampling time as well as signal length on the system identification has been studied. The results of gains selection using the proposed method have been compared with results obtained using the approach based on the placement of the poles of linearized estimation error equations. The introduced method delivers results comparable with analytical methods and does not require prior preparation specific to the implemented speed observer, such as linearization.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1115
Author(s):  
Rui Feng ◽  
Jiong Wang ◽  
Wei Qiao ◽  
Fu Wang ◽  
Ming Zhou ◽  
...  

In high-reliability applications, the health condition of the MEMS gyroscope needs to be known in real time to ensure that the system does not fail due to the wrong output signal. Because the MEMS gyroscope self-test based on the principle of electrostatic force cannot be performed during the working state. We propose that by monitoring the quadrature error signal of the MEMS gyroscope in real time, an online self-test of the MEMS gyroscope can be realized. The correlation between the gyroscope’s quadrature error amplitude signal and the gyroscope scale factor and bias was theoretically analyzed. Based on the sixteen-sided cobweb-like MEMS gyroscope, the real-time built-in self-test (BIST) method of the MEMS gyroscope based on the quadrature error signal was verified. By artificially setting the control signal of the gyroscope to zero, we imitated several scenarios where the gyroscope malfunctioned. Moreover, a mechanical impact table was used to impact the gyroscope. After a 6000 g shock, the gyroscope scale factor, bias, and quadrature error amplitude changed by −1.02%, −5.76%, and −3.74%, respectively, compared to before the impact. The gyroscope failed after a 10,000 g impact, and the quadrature error amplitude changed −99.82% compared to before the impact. The experimental results show that, when the amplitude of the quadrature error signal seriously deviates from the original value, it can be determined that the gyroscope output signal is invalid.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiyue Ma ◽  
Kean Chen ◽  
Lei Wang ◽  
Yang Liu

This paper presents an analytical investigation on constructing an error sensing strategy of a new type of active MPPA. The proposed active MPPA is composed of MPP, air cavity, and point force-controlled backing panel, which can actively improve the low-frequency sound absorption of the MPPA. Constructing an appropriate error sensing strategy for obtaining an error signal that is highly correlated with the sound absorption coefficient of the active MPPA is a key problem encountered in practical implementation. The theoretical model of the active MPPA is firstly established using the modal analysis approach. Then, the active control performance and surface impedance characteristics in the controlled condition are analyzed in detail. Finally, the error sensing strategy of the active MPPA is constructed by measuring the surface average impedance ratio with an acoustic vector sensor (AVS). Simulation results show that, due to the antisymmetric property of the vibration of the backing panel on the resonant frequency, the surface impedance of the active MPPA after control also has symmetry or antisymmetry properties. Hence, the surface average impedance ratio of the active MPPA can be measured by using the limited number of acoustic vector sensors (sensing pressure and particle velocity). This variable is also highly correlated with the sound absorption coefficient of the active MPPA and thus can be used to construct the cost function (error signal). The active control result obtained by the proposed error sensing strategy is in good agreement with the theoretically optimal result, which validates the feasibility of this approach.


Author(s):  
S. A. Naida ◽  
Y. O. Onykienko ◽  
O. I. Drozdenko ◽  
O. I. Smolenska ◽  
V. S. Baran ◽  
...  

Goal. Analysis of the effect of load inductance at the output of the class D amplifier for different values of the duration of «dead time» and assessment of the adequacy of existing mathematical models for calculating the THD at the output of the amplifier depending on the duration of «dead time». Methodology. The study of the effect of «dead time» on the THD was performed using a computer model of the half-bridge converter board EPC9035 from Efficient Power Conversion. This board contains GaN transistors EPC2022 eGaN®, the corresponding control driver and other necessary elements for operation. The use of GaN transistors has made it possible to investigate the operation in a wide range of frequent switching, both to control the motor and to amplify the audio signal. Results. It is established that the value of load inductance affects the level of nonlinear distortions caused by «dead time». At inductance values that provide a constant sign of the output current, a difference arises between the duration of the input and output pulses, which increases the THD. At inductance values, when the choke current changes sign during a pulse, there is no error between the duration of the input and output pulses. Changing the inductance changes the relationship between the error signal and the non-error signal. THD changes accordingly. At high conversion frequencies, the voltage spikes caused by the choke current through the built-in diodes during the dead time are partially compensated by overcharging the output capacitance of the transistors, which also reduces harmonic distortion. Originality. For the first time, the value of the THD at the outlets in the fallowness of the different indices of the inductance of the choke and the theoretical calculation of the value in the results of the computer model was obtained. Practical significance. The dependence of the THD values on the inductance of the choke for converters with a switching frequency range from 1 kHz to 400 kHz, which allows them to be used both to control the motor and to amplify the audio signal.


2021 ◽  
Author(s):  
Palash K. Banerjee

In this research project, an AC Cûk voltage regulator has been proposed for maintaining constant voltage across the load during wide range of input voltage fluctuations. The proposed AC Ck voltage regulator made of practical IGBT switches has been investigated for both manual and automatic control circuit. A fraction of the output voltage is taken as the input voltage of the control circuit and produce the error signal if any changes occur in the output voltage. The modified error signal is used to make PWM signals for switching devices as per output voltage of regulator. The PWM controls the ON/OFF time (Duty cycle) of switching devices (IGBTs) of the proposed regulator. As a result the regulator is maintaining a constant voltage across the load during any change in supply voltage. The simulation waveforms and the calculated total harmonics distortion (THD) values are compared with previously studied AC Buck-Boost regulator. The observed simulated waveforms of output voltage, output current and input current and THD values have been improved in case of proposed AC Cûk voltage regulator.


Sign in / Sign up

Export Citation Format

Share Document