scholarly journals Continuous updating of superior colliculus visuospatial memory responses during smooth pursuit eye movements.

2012 ◽  
Vol 12 (9) ◽  
pp. 992-992
Author(s):  
S. Dash ◽  
X. Yan ◽  
H. Wang ◽  
J. D. Crawford
2000 ◽  
Vol 84 (2) ◽  
pp. 892-908 ◽  
Author(s):  
Michele A. Basso ◽  
Richard J. Krauzlis ◽  
Robert H. Wurtz

Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.


2001 ◽  
Vol 86 (5) ◽  
pp. 2629-2633 ◽  
Author(s):  
Richard J. Krauzlis

The intermediate and deep layers of the monkey superior colliculus (SC) are known to be important for the generation of saccadic eye movements. Recent studies have also provided evidence that the rostral SC might be involved in the control of pursuit eye movements. However, because rostral SC neurons respond to visual stimuli used to guide pursuit, it is also possible that the pursuit-related activity is simply a visual response. To test this possibility, we recorded the activity of neurons in the rostral SC as monkeys smoothly pursued a target that was briefly extinguished. We found that almost all rostral SC neurons in our sample maintained their pursuit-related activity during a brief visual blink, which was similar to the maintained activity they also exhibited during blinks imposed during fixation. These results indicate that discharge of rostral SC neurons during pursuit is not simply a visual response, but includes extraretinal signals.


2011 ◽  
Vol 70 ◽  
pp. 352-352 ◽  
Author(s):  
K Strand Brodd ◽  
K Rosander ◽  
H Grönqvist ◽  
G Holmström ◽  
B Strömberg ◽  
...  

1983 ◽  
Vol 79 (2-3) ◽  
pp. 190-192 ◽  
Author(s):  
G. Tedeschi ◽  
P. R. M. Bittencourt ◽  
A. T. Smith ◽  
A. Richens

1975 ◽  
Vol 44 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Philip S. Holzman ◽  
Deborah L. Levy ◽  
Eberhard H. Uhlenhuth ◽  
Leonard R. Proctor ◽  
Daniel X. Freedman

Sign in / Sign up

Export Citation Format

Share Document