Gap Junctions and Inhibitory Synapses Modulate Inspiratory Motoneuron Synchronization

2001 ◽  
Vol 85 (4) ◽  
pp. 1543-1551 ◽  
Author(s):  
Céline Bou-Flores ◽  
Albert J. Berger

Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neonatal mouse medullary slice and en bloc brain stem-spinal cord preparations where rhythmic inspiratory motor activity can readily be recorded from both hypoglossal and phrenic nerve roots. The rhythmic inspiratory activity observed had two temporal characteristics: the basic respiratory frequency occurring on a long time scale and the synchronous neuronal discharge within the inspiratory burst occurring on a short time scale. In both preparations, we observed that bath application of gap-junction blockers, including 18α-glycyrrhetinic acid, 18β-glycyrrhetinic acid, and carbenoxolone, all caused a reduction in respiratory frequency. In contrast, peak integrated phrenic and hypoglossal inspiratory activity was not significantly changed by gap-junction blockade. On a short-time-scale, gap-junction blockade increased the degree of synchronization within an inspiratory burst observed in both nerves. In contrast, opposite results were observed with blockade of GABAA and glycine receptors. We found that respiratory frequency increased with receptor blockade, and simultaneous blockade of both receptors consistently resulted in a reduction in short-time-scale synchronized activity observed in phrenic and hypoglossal inspiratory bursts. These results support the concept that the central respiratory system has two components: a rhythm generator responsible for the production of respiratory cycle timing and an inspiratory pattern generator that is involved in short-time-scale synchronization. In the neonatal rodent, properties of both components can be regulated by interneuronal communication via gap junctions and inhibitory synaptic transmission.

1993 ◽  
Vol 21 (2) ◽  
pp. 196-201
Author(s):  
Søren Achim Nielsen ◽  
Thomas Hougaard

An alternative test is presented, in which algal cultures are used for testing toxic substances. This test system is based on variations in the size distribution of cells in test cultures as a measurement of growth. Thus, inhibition of mitotic activity is used as a measurement for toxic effects. The test can be performed on a short time-scale and is very sensitive to even weak toxic doses.


1996 ◽  
Vol 32 (2) ◽  
pp. 212-221 ◽  
Author(s):  
Eglee Gomez Fermin ◽  
Francisco G. Figueiras ◽  
Belen Arbones ◽  
Maria Luisa Villarino

Sign in / Sign up

Export Citation Format

Share Document