scholarly journals An FFT-Based Spectral Analysis Method for Linear Discrete Dynamic Systems with Non-Proportional Damping

2006 ◽  
Vol 13 (6) ◽  
pp. 595-606 ◽  
Author(s):  
Jooyong Cho ◽  
Usik Lee

This paper proposes a fast Fourier transforms (FFT)-based spectral analysis method for the dynamic analysis of linear discrete dynamic systems which have non-proportional viscous damping and are subjected to non-zero initial conditions. To evaluate the proposed FFT-based spectral analysis method, the forced vibration of a three degree-of-freedom (DOF) system is considered as an illustrative problem. The accuracy of the proposed FFT-based spectral analysis method is evaluated by comparing the forced vibration responses obtained by the present FFT-based spectral analysis method with those obtained by using the well-known Runge-Kutta method and modal analysis method.

2007 ◽  
Vol 345-346 ◽  
pp. 845-848
Author(s):  
Joo Yong Cho ◽  
Han Suk Go ◽  
Usik Lee

In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the dynamic analysis of spectral element models subjected to the non-zero initial conditions. To evaluate the proposed SAM, the spectral element model for the simply supported Bernoulli-Euler beam is considered as an example problem. The accuracy of the proposed SAM is evaluated by comparing the dynamic responses obtained by SAM with the exact analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document