vibration responses
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 197)

H-INDEX

26
(FIVE YEARS 8)

2022 ◽  
Vol 12 (2) ◽  
pp. 615
Author(s):  
Haobo Wang ◽  
Yulai Zhao ◽  
Zhong Luo ◽  
Qingkai Han

Squeeze film damper (SFD) is widely used in the vibration suppression of aeroengine rotor systems, but will cause complex motions of the rotor system under specific operating conditions. In this paper, a lumped-mass dynamic model of the high-pressure rotor system in an aeroengine is established, and the nonlinear stiffness and damping formula of SFD are introduced into the above model. The vibration responses of the rotor system under different rotating speeds and with different unbalances are investigated numerically, and the influence of SFD on the rotor system vibration and the change of suppression ability are compared and analyzed. The results show that in the case of high speed, together with a small unbalance, the rotor system will perform a complex vibration or a bistable vibration due to SFD. If the unbalance is properly increased under the same case of high speed, the vibration of the rotor becomes single-harmonic and the bistable vibration disappears. The research results can provide a helpful reference for analyzing complex vibration mechanisms of the rotor system with SFD and achieving an effective vibration suppression through unbalance regulation.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Lei Li ◽  
Zhong Luo ◽  
Fengxia He ◽  
Zhaoye Qin ◽  
Yuqi Li ◽  
...  

The dual-rotor system has been widely used in aero-engines and has the characteristics of large axial size, the interaction between the high-pressure rotor and low-pressure rotor, and stiffness nonlinearity of bolted joints. However, the testing of a full-scale dual-rotor system is expensive and time-consuming. In this paper, the scaling relationships for the dual-rotor system with bolted joints are proposed for predicting the responses of full-scale structure, which are developed by generalized and fundamental equations of substructures (shaft, disk, and bolted joints). Different materials between prototype and model are considered in the derived scaling relationships. Moreover, the effects of bolted joints on the dual-rotor system are analyzed to demonstrate the necessity for considering bolted joints in the similitude procedure. Furthermore, the dynamic characteristics for different working conditions (low-pressure rotor excitation, high-pressure rotor excitation, two frequency excitations, and counter-rotation) are predicted by the scaled model made of a relatively cheap material. The results show that the critical speeds, vibration responses, and frequency components can be predicted with good accuracy, even though the scaled model is made of different materials.


2021 ◽  
pp. 107754632110576
Author(s):  
Ziyu Tao ◽  
Chao Zou ◽  
Yimin Wang ◽  
Jie Wu

Train-induced feelable vibrations can bring side effects to people living or working in the building, as well as to operation of precise equipment. As massive construction of over-track buildings above metro depots prevails in megacities, impacts from train-induced feelable vibration take more concern. Four standard-designed 4-story steel-framed offices above the throat area in the Qianhai metro depot in Shenzhen, China, are studied in this research. The field measurements were conducted to investigate the influences of track alignment and track location in the throat area on vibration responses of over-track buildings. Detailed vibration analyses using the finite element method have been conducted. Train-induced floor vibration assessments on human comfort are carried out based on a total of 54 train pass-bys operated in the morning and evening and on different tracks. It can be found that the track alignment primarily affected the higher frequency components of train-induced vibrations, where curved trackinduced vibrations have larger amplitudes. The variance of train-induced building vibrations among pass-bys on different track locations was reduced compared with that of ground vibrations because of the averaging effects caused by multiple transmitting paths within the massive platform and stiff transfer structures. Train-induced acceleration levels at mid-floor can be 20–25 dB larger than those near columns at floor resonance frequencies which are dependent on the structural design. This research gives a comprehensive insight into train-induced vibrations within low-rise steel-framed buildings above the throat area in the metro depot, which is a valuable reference for assessments before the construction of future similar over-track communities.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Lihai Chen ◽  
Ma Fang ◽  
Ming Qiu ◽  
Yanfang Dong ◽  
Xiaoxu Pang ◽  
...  

This paper investigates a method to dynamically model compound faults on the inner and outer rings of an angular contact ball bearing as well as their effects on its dynamic behavior. Gupta’s dynamic modeling method is used to consider changes in the deformation and direction of the contact load when the ball passes through the damaged area and to develop a dynamic model of compound faults in the angular contact ball bearing. The step-changing fourth-order Runge–Kutta method is used to solve the dynamic compound fault model. The time-domain signal of vibration responses in the case of a single fault in the inner and outer rings exhibited a certain periodicity, and the frequency of faults in the envelope spectrum was clear. By comparison, the periodicity of compound faults was not clear. The signals of compound faults were decomposed by the dual-tree complex wavelet transform to identify their characteristic frequency. Errors occurred between the characteristic frequency of the theoretical fault and its simulated value. They increased with the rotational speed and decreased with an increase in axial load, whereas the influence of radial load on them was minor. For compound faults on the inner and outer rings of an angular contact ball bearing, this study provides a modeling method that can describe changes in the deformation and direction of the contact load when the ball passes through the damaged area of the inner and outer rings. The work here can provide an important foundation for fault identification in angular contact ball bearings.


2021 ◽  
pp. 096739112110576
Author(s):  
Rajeshkumar Selvaraj ◽  
Kamesh Gupta ◽  
Shubham Kumar Singh ◽  
Ankur Patel ◽  
Manoharan Ramamoorthy

This study investigates the free vibration responses of laminated composite sandwich beam with multi-cores using experimental and numerical methods. The laminated composite face sheets are made by using hand layup method. An experimental modal test has been carried for different configurations of multi-core sandwich beams under different end conditions. The single-core and multi-core sandwich beams has been modeled and the natural frequencies of sandwich beams are determined using ANSYS software. The numerical model is verified by comparing the obtained natural frequencies with experimental results. The numerical and experimental results indicate that the multi-core sandwich beam greatly influences the structural stiffness compared with single-core sandwich beam under different end conditions. Furthermore, the influence of several parameters such as the end conditions, thickness of the core layer, and stacking sequence on the natural frequencies of the various configurations of the multi-core sandwich beams are presented.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 309
Author(s):  
Liuhuo Wang ◽  
Chengfeng Liu ◽  
Xiaowei Zhu ◽  
Zhixian Xu ◽  
Wenwei Zhu ◽  
...  

In the power system, the transmission tower is located in a variety of terrains. Sometimes there will be displacement, inclination, settlement and other phenomena, which eventually lead to the collapse of the tower. In this paper, a method for monitoring the settlement of a transmission tower based on active vibration response is proposed, which is based on the principle of modal identification. Firstly, a device was designed, which includes three parts: a monitoring host, wireless sensor and excitation device. It can tap the transmission tower independently and regularly, and collect the vibration response of the transmission tower. Then, vibration analysis experiments were used to validate the horizontal vibration responses of transmission towers which can be obtained by striking the transmission towers from either the X direction or Y direction. It can be seen from the frequency response function that the natural frequencies obtained from these two directions are identical. Finally, the transmission tower settlement experiment was carried out. The experimental results show that the third to fifth natural frequencies decreased most obviously, even up to 2.83 Hz. Further, it was found that under different conditions, as long as the tower legs adjacent to the excitation position settle, the natural frequency will decrease more significantly, which is very helpful for engineering application.


Sign in / Sign up

Export Citation Format

Share Document