Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Andrea Acquaviva ◽  
Andrea Alimonda ◽  
Salvatore Carta ◽  
Michele Pittau
2015 ◽  
Vol 22 (4) ◽  
pp. 14-28 ◽  
Author(s):  
Jingxi Xu ◽  
Benjamin W. Wah

1995 ◽  
Vol 13 (4) ◽  
pp. 749-763 ◽  
Author(s):  
A. Guha ◽  
A. Pavan ◽  
J. Liu ◽  
A. Rastogi ◽  
T. Steeves

Author(s):  
Praveen Kumar ◽  
Amit Pande ◽  
Ankush Mittal ◽  
Abhisek Mudgal

Video coding and analysis for low power and low bandwidth multimedia applications has always been a great challenge. The limited computational resources on ubiquitous multimedia devices like cameras along with low and varying bandwidth over wireless network lead to serious bottlenecks in delivering real-time streaming of videos for such applications. This work presents a Content-based Network-adaptive Video-transmission (CbNaVt) framework which can waive off the requirements of low bandwidth. This is done by transmitting important content only to the end user. The framework is illustrated with the example of video streaming in the context of remote laboratory setup. A framework for distributed processing using mobile agents is discussed with the example of Distributed Video Surveillance (DVS). In this regard, the increased computational costs due to video processing tasks like object segmentation and tracking are shared by the cameras and a local base station called as Processing Proxy Server (PPS).However, in a distributed scenario like traffic surveillance, where moving objects is tracked using multiple cameras, the processing tasks needs to be dynamically distributed. This is done intelligently using mobile agents by migrating from one PPS to another for tracking an individual case object and transmitting required information to the end users. Although the authors propose a specific implementation for CbNaVt and DVS systems, the general ideas in design of such systems exemplify the way information can be intelligently transmitted in any ubiquitous multimedia applications along with the use of mobile agents for real-time processing and retrieval of video signal.


1970 ◽  
Vol 8 (1-2) ◽  
pp. 197-210
Author(s):  
Simeon Ozuomba ◽  
Gloria A. Chukwudebe

This Article was RETRACTED on 22/07/2011 at the request of the authors because the paper has already been published in another journal in Nigeria. - Editor, JIEIn this paper, Guaranteed Services Token (GuST) protocol for integrated services networks which can efficiently support diverse traffic consisting of hard and soft real-time traffic along with non-real-time traffic is proposed. This is to meet the increasing demand for better performance of real time communications required by distributed multimedia applications, process control, factory automation, etc.For some time now, timed-token protocols have become the preferred Medium Access Control (MAC) protocol for supporting modern real-time systems. However, the existing timed-token protocols have been studied, and inefficiencies discovered with the way asynchronous traffic is handled. GuST employs the timed-token mechanisms in the Timely-Token protocol along with that of Budget Sharing Token (BuST) protocol. We discussed some bounds on the behavior of GuST protocol. In particular, we show that the token is never late, and the transmission of asynchronous traffic is guaranteed. We also compared GuST protocol against the Timely-Token protocol and the BuST protocol. Our comparison focuses on the ability of those protocols to support synchronous and asynchronous traffic. We demonstrated that the performance achieved by GuST is better than Timely-Toke n and BuST protocols especially for a system with light load of real-time traffic but with heavy load of non-real-time traffic. GuST protocol can be incorporated into the Ethernet network to provide real-time performance guarantees to multimedia applications. It can also be used to improve on the throughput of the Profibus which is a Fieldbus network standard.Keywords: Timed-Token Protocol; Ethernet; Timely-Token Protocol; Budget Sharing Token Protocol; Integrated Services Networks; Real-Time Traffic; Non-Real-Time Traffic; Media Access Control (MAC); GuST: Guaranteed; Services Token protocolDOI: http://dx.doi.org/10.3126/jie.v8i1-2.5112Journal of the Institute of Engineering Vol. 8, No. 1&2, 2010/2011Page: 197-210Uploaded Date: 20 July, 2011


Sign in / Sign up

Export Citation Format

Share Document