scholarly journals Single-Trial Decoding of Bistable Perception Based on Sparse Nonnegative Tensor Decomposition

2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Zhisong Wang ◽  
Alexander Maier ◽  
Nikos K. Logothetis ◽  
Hualou Liang

The study of the neuronal correlates of the spontaneous alternation in perception elicited by bistable visual stimuli is promising for understanding the mechanism of neural information processing and the neural basis of visual perception and perceptual decision-making. In this paper, we develop a sparse nonnegative tensor factorization-(NTF)-based method to extract features from the local field potential (LFP), collected from the middle temporal (MT) visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM) perception. We apply the feature extraction approach to the multichannel time-frequency representation of the intracortical LFP data. The advantages of the sparse NTF-based feature extraction approach lies in its capability to yield components common across the space, time, and frequency domains yet discriminative across different conditions without prior knowledge of the discriminating frequency bands and temporal windows for a specific subject. We employ the support vector machines (SVMs) classifier based on the features of the NTF components for single-trial decoding the reported perception. Our results suggest that although other bands also have certain discriminability, the gamma band feature carries the most discriminative information for bistable perception, and that imposing the sparseness constraints on the nonnegative tensor factorization improves extraction of this feature.

2021 ◽  
Vol 216 ◽  
pp. 106657
Author(s):  
Jin-Ju Wang ◽  
Ding-Cheng Wang ◽  
Ting-Zhu Huang ◽  
Jie Huang ◽  
Xi-Le Zhao ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Sign in / Sign up

Export Citation Format

Share Document