scholarly journals Feature Extraction Strategy with Improved Permutation Entropy and Its Application in Fault Diagnosis of Bearings

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2018 ◽  
Vol 8 (9) ◽  
pp. 1621 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Yong Ren ◽  
Gongbo Zhou ◽  
...  

Acceleration sensors are frequently applied to collect vibration signals for bearing fault diagnosis. To fully use these vibration signals of multi-sensors, this paper proposes a new approach to fuse multi-sensor information for bearing fault diagnosis by using ensemble empirical mode decomposition (EEMD), correlation coefficient analysis, and support vector machine (SVM). First, EEMD is applied to decompose the vibration signal into a set of intrinsic mode functions (IMFs), and a correlation coefficient ratio factor (CCRF) is defined to select sensitive IMFs to reconstruct new vibration signals for further feature fusion analysis. Second, an original feature space is constructed from the reconstructed signal. Afterwards, weights are assigned by correlation coefficients among the vibration signals of the considered multi-sensors, and the so-called fused features are extracted by the obtained weights and original feature space. Finally, a trained SVM is employed as the classifier for bearing fault diagnosis. The diagnosis results of the original vibration signals, the first IMF, the proposed reconstruction signal, and the proposed method are 73.33%, 74.17%, 95.83% and 100%, respectively. Therefore, the experiments show that the proposed method has the highest diagnostic accuracy, and it can be regarded as a new way to improve diagnosis results for bearings.



Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.



2020 ◽  
Vol 102 (3) ◽  
pp. 1717-1731
Author(s):  
Mantas Landauskas ◽  
Maosen Cao ◽  
Minvydas Ragulskis


2020 ◽  
Vol 10 (20) ◽  
pp. 7068
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Recent convolutional neural network (CNN) models in image processing can be used as feature-extraction methods to achieve high accuracy as well as automatic processing in bearing fault diagnosis. The combination of deep learning methods with appropriate signal representation techniques has proven its efficiency compared with traditional algorithms. Vital electrical machines require a strict monitoring system, and the accuracy of these machines’ monitoring systems takes precedence over any other factors. In this paper, we propose a new method for diagnosing bearing faults under variable shaft speeds using acoustic emission (AE) signals. Our proposed method predicts not only bearing fault types but also the degradation level of bearings. In the proposed technique, AE signals acquired from bearings are represented by spectrograms to obtain as much information as possible in the time–frequency domain. Feature extraction and classification processes are performed by deep learning using EfficientNet and a stochastic line-search optimizer. According to our various experiments, the proposed method can provide high accuracy and robustness under noisy environments compared with existing AE-based bearing fault diagnosis methods.



2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.



2020 ◽  
Vol 44 (3) ◽  
pp. 405-418
Author(s):  
Shuzhi Gao ◽  
Tianchi Li ◽  
Yimin Zhang

Taking aim at the nonstationary nonlinearity of the rolling bearing vibration signal, a rolling bearing fault diagnosis method based on the entropy fusion feature of complementary ensemble empirical mode decomposition (CEEMD) is proposed in combination with information fusion theory. First, CEEMD of the vibration signal of the rolling bearing is performed. Then the signal is decomposed into the sum of several intrinsic mode functions (IMFs), and the singular entropy, energy entropy, and permutation entropy are obtained for the IMFs with fault features. Second, the feature extraction method of entropy fusion is proposed, and the three entropy data obtained are input into kernel principal component analysis (KPCA) for feature fusion and dimensionality reduction to obtain complementary features. Finally, the extracted features are imported into the particle swarm optimization (PSO) algorithm to optimize the least-squares support vector machine (LSSVM) for fault classification. Through experimental verification, the proposed method can be used for roller bearing fault diagnosis.



2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Jinbao Zhang ◽  
Yongqiang Zhao ◽  
Xinglin Li ◽  
Ming Liu

To improve the bearings diagnosis accuracy considering multiple fault types with small samples, a new approach that combined adaptive local iterative filtering (ALIF), multiscale entropy features, and kernel sparse representation classification (KSRC) is put forward in this paper. ALIF is used to adaptively decompose the nonlinear, nonstationary vibration signals into a sum of intrinsic mode functions (IMFs). Multiple entropy features such as sample entropy, fuzzy entropy, and permutation entropy with multiscale are computed from the first three IMFs and a total of one hundred and eighty features are obtained. After normalization, the features are employed to train and test the classifier KSRC, respectively. Finally, the proposed approach is evaluated with two experimental tests. One is concerned with different types of bearing faults from the centrifugal pump; and the other is from Case Western Reserve University (CWRU) considering 12 bearing fault states. Experimental results have proved that the proposed approach is efficient for bearing fault diagnosis, and high accuracy will be obtained with high dimensional features through small samples.



2013 ◽  
Vol 333-335 ◽  
pp. 550-554 ◽  
Author(s):  
Chang Qing Shen ◽  
Fei Hu ◽  
Zhong Kui Zhu ◽  
Fan Rang Kong

The research in bearing fault diagnosis has been attracting great attention in the past decades. Development of feasible fault diagnosis procedures to prevent failures that could cause huge economic loss timely is necessary. The whole life of the bearing is also a developing process for some sensitive features related to the fault trend. In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) and support vector regression (SVR) to conduct bearing fault degree recognition is proposed. This analysis first extracts the sensitive features from the intrinsic mode functions (IMFs) produced by EEMD which is a potential time-frequency analysis method, and then constructs an intelligent nonlinear model with input feature vectors extracted from the IMFs and defect size as output. Through validation of experimental data, the results indicated that the bearing fault degree could be effectively and precisely recognized.



Sign in / Sign up

Export Citation Format

Share Document