scholarly journals Modified Crank-Nicolson Difference Schemes for Nonlocal Boundary Value Problem for the Schrödinger Equation

2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Ali Sirma

The nonlocal boundary value problem for Schrödinger equation in a Hilbert space is considered. The second-order of accuracy -modified Crank-Nicolson difference schemes for the approximate solutions of this nonlocal boundary value problem are presented. The stability of these difference schemes is established. A numerical method is proposed for solving a one-dimensional nonlocal boundary value problem for the Schrödinger equation with Dirichlet boundary condition. A procedure of modified Gauss elimination method is used for solving these difference schemes. The method is illustrated by numerical examples.

2007 ◽  
Vol 2007 ◽  
pp. 1-16 ◽  
Author(s):  
A. Ashyralyev

The first and second orders of accuracy difference schemes for the approximate solutions of the nonlocal boundary value problemv′(t)+Av(t)=f(t)(0≤t≤1),v(0)=v(λ)+μ,0<λ≤1, for differential equation in an arbitrary Banach spaceEwith the strongly positive operatorAare considered. The well-posedness of these difference schemes in difference analogues of spaces of smooth functions is established. In applications, the coercive stability estimates for the solutions of difference schemes for the approximate solutions of the nonlocal boundary value problem for parabolic equation are obtained.


2006 ◽  
Vol 2006 ◽  
pp. 1-13 ◽  
Author(s):  
A. Ashyralyev ◽  
G. Judakova ◽  
P. E. Sobolevskii

The nonlocal boundary value problem for hyperbolic-elliptic equationd2u(t)/dt2+Au(t)=f(t),(0≤t≤1),−d2u(t)/dt2+Au(t)=g(t),(−1≤t≤0),u(0)=ϕ,u(1)=u(−1)in a Hilbert spaceHis considered. The second order of accuracy difference schemes for approximate solutions of this boundary value problem are presented. The stability estimates for the solution of these difference schemes are established.


Filomat ◽  
2014 ◽  
Vol 28 (5) ◽  
pp. 1027-1047 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Elif Ozturk

In this study, the stable difference schemes for the numerical solution of Bitsadze-Samarskii type nonlocal boundary-value problem involving integral condition for the elliptic equations are studied. The second and fourth orders of the accuracy difference schemes are presented. A procedure of modified Gauss elimination method is used for solving these difference schemes for the two-dimensional elliptic differential equation. The method is illustrated by numerical examples.


2004 ◽  
Vol 2004 (2) ◽  
pp. 273-286 ◽  
Author(s):  
A. Ashyralyev ◽  
I. Karatay ◽  
P. E. Sobolevskii

We consider the nonlocal boundary value problem for difference equations(uk−uk−1)/τ+Auk=φk,1≤k≤N,Nτ=1, andu0=u[λ/τ]+φ,0<λ≤1, in an arbitrary Banach spaceEwith the strongly positive operatorA. The well-posedness of this nonlocal boundary value problem for difference equations in various Banach spaces is studied. In applications, the stability and coercive stability estimates in Hölder norms for the solutions of the difference scheme of the mixed-type boundary value problems for the parabolic equations are obtained. Some results of numerical experiments are given.


Sign in / Sign up

Export Citation Format

Share Document