scholarly journals Global Hopf Bifurcation Analysis for a Time-Delayed Model of Asset Prices

2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Ying Qu ◽  
Junjie Wei

A time-delayed model of speculative asset markets is investigated to discuss the effect of time delay and market fraction of the fundamentalists on the dynamics of asset prices. It proves that a sequence of Hopf bifurcations occurs at the positive equilibriumv, the fundamental price of the asset, as the parameters vary. The direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are determined using normal form method and center manifold theory. Global existence of periodic solutions is established combining a global Hopf bifurcation theorem with a Bendixson's criterion for higher-dimensional ordinary differential equations.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2007 ◽  
Vol 17 (06) ◽  
pp. 2149-2157 ◽  
Author(s):  
JUNJIE WEI ◽  
DEJUN FAN

The dynamics of a Mackey–Glass equation with delay are investigated. We prove that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Global existence of periodic solutions are established using a global Hopf bifurcation result due to Wu [1998] and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [1994].


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Ming Liu ◽  
Xiaofeng Xu

The dynamics of a 2-dimensional neural network model in neutral form are investigated. We prove that a sequence of Hopf bifurcations occurs at the origin as the delay increases. The direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are determined by using normal form method and center manifold theory. Global existence of periodic solutions is established using a global Hopf bifurcation result of Krawcewicz et al. Finally, some numerical simulations are carried out to support the analytic results.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is concerned with a Holling type III predator-prey system with stage structure for the prey population and two time delays. The main result is given in terms of local stability and bifurcation. By choosing the time delay as a bifurcation parameter, sufficient conditions for the local stability of the positive equilibrium and the existence of periodic solutions via Hopf bifurcation with respect to both delays are obtained. In particular, explicit formulas that can determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are established by using the normal form method and center manifold theorem. Finally, numerical simulations supporting the theoretical analysis are also included.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao

A modified Leslie-Gower predator-prey system with two delays is investigated. By choosingτ1andτ2as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650100 ◽  
Author(s):  
Hong-Bing Chen ◽  
Xiao-Ke Sun

In this paper, a system of neural networks in neutral form with time delay is investigated. Further, by introducing delay [Formula: see text] as a bifurcation parameter, it is found that Hopf bifurcation occurs when [Formula: see text] is across some critical values. The direction of the Hopf bifurcations and the stability are determined by using normal form method and center manifold theory. Next, the global existence of periodic solution is established by using a global Hopf bifurcation result. Finally, an example is given to support the theoretical predictions.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Suxia Zhang ◽  
Hongsen Dong ◽  
Jinhu Xu

In this paper, an infection model with delay and general incidence function is formulated and analyzed. Theoretical results reveal that positive equilibrium may lose its stability, and Hopf bifurcation occurs when choosing delay as the bifurcation parameter. The direction of Hopf bifurcation and the stability of the periodic solutions are also discussed. Furthermore, to illustrate the numerous changes in the local stability and instability of the positive equilibrium, we conduct numerical simulations by using four different types of functional incidence, i.e., bilinear incidence, saturation incidence, Beddington–DeAngelis response, and Hattaf–Yousfi response. Rich dynamics of the model, such as Hopf bifurcations and chaotic solutions, are presented numerically.


2012 ◽  
Vol 05 (01) ◽  
pp. 1250007 ◽  
Author(s):  
ZHICHAO JIANG ◽  
ZHAOZHUANG GUO ◽  
YUEFANG SUN

In this paper, a time-delayed predator-prey system is considered. The existence of Hopf bifurcations at the positive equilibrium is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out.


2011 ◽  
Vol 21 (03) ◽  
pp. 711-724 ◽  
Author(s):  
YANQIU LI ◽  
WEIHUA JIANG

The dynamics of a linearly coupled Mackey–Glass system with delay are investigated. Based on the distribution of eigenvalues, we prove that a sequence of Hopf bifurcation occurs at the positive equilibrium as the delay increases and obtain the bifurcation set in the parameter plane. The explicit algorithm for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived, using the theories of normal form and center manifold. The global existence of periodic solutions is established using a global Hopf bifurcation result due to Wu [1998] and a Bendixson's criterion for higher dimensional ordinary differential equations due to [Li & Muldowney, 1993].


Sign in / Sign up

Export Citation Format

Share Document