normal form method
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ruizhi Yang ◽  
Chenxuan Nie ◽  
Dan Jin

Abstract In this paper, we study a delayed diffusive predator-prey model with nonlocal competition in prey and habitat complexity. The local stability of coexisting equilibrium are studied by analyzing the eigenvalue spectrum. Time delay inducing Hopf bifurcation is investigated by using time delay as bifurcation parameter. We give some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution by utilizing the normal form method and center manifold theorem. Our results suggest that only nonlocal competition and diffusion together can induce stably spatial inhomogeneous bifurcating periodic solutions.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Ruimin Zhang ◽  
Xiaohui Liu ◽  
Chunjin Wei

In this paper, we study a classic mutualistic relationship between the leaf cutter ants and their fungus garden, establishing a time delay mutualistic system with stage structure. We investigate the stability and Hopf bifurcation by analyzing the distribution of the roots of the associated characteristic equation. By means of the center manifold theory and normal form method, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some numerical simulations are carried out for illustrating the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yanxia Zhang ◽  
Long Li ◽  
Junjian Huang ◽  
Yanjun Liu

In this paper, a vector-borne disease model with two delays and reinfection is established and considered. First of all, the existence of the equilibrium of the system, under different cases of two delays, is discussed through analyzing the corresponding characteristic equation of the linear system. Some conditions that the system undergoes Hopf bifurcation at the endemic equilibrium are obtained. Furthermore, by employing the normal form method and the center manifold theorem for delay differential equations, some explicit formulas used to describe the properties of bifurcating periodic solutions are derived. Finally, the numerical examples and simulations are presented to verify our theoretical conclusions. Meanwhile, the influences of the degree of partial protection for recovered people acquired by a primary infection on the endemic equilibrium and the critical values of the two delays are analyzed.


2021 ◽  
Vol 26 (3) ◽  
pp. 375-395
Author(s):  
Rina Su ◽  
Chunrui Zhang

In this paper, the Hopf-zero bifurcation of the ring unidirectionally coupled Toda oscillators with delay was explored. First, the conditions of the occurrence of Hopf-zero bifurcation were obtained by analyzing the distribution of eigenvalues in correspondence to linearization. Second, the stability of Hopf-zero bifurcation periodic solutions was determined based on the discussion of the normal form of the system, and some numerical simulations were employed to illustrate the results of this study. Lastly, the normal form of the system on the center manifold was derived by using the center manifold theorem and normal form method.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1249 ◽  
Author(s):  
Nnaemeka Sunday Ugwuanyi ◽  
Xavier Kestelyn ◽  
Bogdan Marinescu ◽  
Olivier Thomas

Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
G. Kai ◽  
W. Zhang ◽  
Z. Jin ◽  
C. Z. Wang

The complex chaotic dynamics and multistability of financial system are some important problems in micro- and macroeconomic fields. In this paper, we study the influence of two-delay feedback on the nonlinear dynamics behavior of financial system, considering the linear stability of equilibrium point under the condition of single delay and two delays. The system undergoes Hopf bifurcation near the equilibrium point. The stability and bifurcation directions of Hopf bifurcation are studied by using the normal form method and central manifold theory. The theoretical results are verified by numerical simulation. Furthermore, one feature of the proposed financial chaotic system is that its multistability depends extremely on the memristor initial condition and the system parameters. It is shown that the nonlinear dynamics of financial chaotic system can be significantly changed by changing the values of time delays.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050035 ◽  
Author(s):  
Hua Zhang ◽  
Ben Niu

In this paper, a phytoplankton–zooplankton model incorporating toxic substances and nonlinear phytoplankton harvesting is established. The existence and stability of the equilibrium of this model are first investigated. The occurrence of transcritical, saddle-node, Hopf and Bautin bifurcations at different equilibria is then verified. In addition, the properties of Hopf bifurcation and Bautin bifurcation are discussed by using normal form method. These results demonstrate that phytoplankton and zooplankton populations will oscillate periodically when the harvesting level is high. More interestingly, it is found that the oscillations are always unstable for small phytoplankton carrying capacity, while the dynamics have close relations with the initial population densities for a large environmental capacity. The existence of Bautin bifurcation theoretically indicates that toxic phytoplankton can cause extinction once there exist harmful algal blooms for some time. These results are numerically illustrated for the model with spatial diffusion, which shows that local phytoplankton blooms will lead to global populations extinction.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xuebing Zhang ◽  
Honglan Zhu

In this paper, a finance system with delay is considered. By analyzing the corresponding characteristic equations, the local stability of equilibrium is established. The existence of Hopf bifurcations at the equilibrium is also discussed. Furthermore, formulas for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theorem. Finally, numerical simulation results are presented to validate the theoretical analysis. Numerical simulation results show that delay can lead a stable system into a chaotic state.


Author(s):  
David Julian Gonzalez Maldonado ◽  
Peter Hagedorn ◽  
Thiago Ritto ◽  
Rubens Sampaio ◽  
Artem Karev

Sign in / Sign up

Export Citation Format

Share Document