scholarly journals Hopf Bifurcation of a Predator-Prey System with Delays and Stage Structure for the Prey

2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is concerned with a Holling type III predator-prey system with stage structure for the prey population and two time delays. The main result is given in terms of local stability and bifurcation. By choosing the time delay as a bifurcation parameter, sufficient conditions for the local stability of the positive equilibrium and the existence of periodic solutions via Hopf bifurcation with respect to both delays are obtained. In particular, explicit formulas that can determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are established by using the normal form method and center manifold theorem. Finally, numerical simulations supporting the theoretical analysis are also included.

2014 ◽  
Vol 2014 ◽  
pp. 1-19
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A predator-prey system with two delays and stage-structure for both the predator and the prey is considered. Sufficient conditions for the local stability and the existence of periodic solutions via Hopf bifurcation with respect to both delays are obtained by analyzing the distribution of the roots of the associated characteristic equation. Specially, the direction of the Hopf bifurcation and the stability of the periodic solutions bifurcating from the Hopf bifurcation are determined by applying the normal form theory and center manifold argument. Some numerical simulations for justifying the theoretical analysis are also provided.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Lv-Zhou Zheng

A class of predator-prey system with distributed delays and competition term is considered. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the predator-prey system. According to the theorem of Hopf bifurcation, some sufficient conditions are obtained for the local stability of the positive equilibrium point.


2022 ◽  
Vol 355 ◽  
pp. 03048
Author(s):  
Bochen Han ◽  
Shengming Yang ◽  
Guangping Zeng

In this paper, we consider a predator-prey system with two time delays, which describes a prey–predator model with parental care for predators. The local stability of the positive equilibrium is analysed. By choosing the two time delays as the bifurcation parameter, the existence of Hopf bifurcation is studied. Numerical simulations show the positive equilibrium loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold.


2009 ◽  
Vol 2009 ◽  
pp. 1-24
Author(s):  
Xiao Zhang ◽  
Rui Xu ◽  
Qintao Gan

A delayed predator-prey system with stage structure for the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of equilibria of the system is discussed. The existence of Hopf bifurcation at the positive equilibrium is established. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and two boundary equilibria of the system. Numerical simulations are carried out to illustrate the theoretical results.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650060 ◽  
Author(s):  
Aiyu Hou ◽  
Shangjiang Guo

In this paper, we consider a class of predator–prey equations with state-dependent delayed feedback. Firstly, we investigate the local stability of the positive equilibrium and the existence of the Hopf bifurcation. Then we use perturbation methods to determine the sub/supercriticality of Hopf bifurcation and hence the stability of Hopf bifurcating periodic solutions. Finally, numerical simulations supporting our theoretical results are also provided.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2019 ◽  
Vol 17 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Zaowang Xiao ◽  
Zhong Li ◽  
Zhenliang Zhu ◽  
Fengde Chen

Abstract In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values. After that, by constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the system. Finally, the influence of prey refuge on densities of prey species and predator species is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoli Wang ◽  
Zhihao Ge

The Hopf bifurcation for a predator-prey system with -logistic growth and prey refuge is studied. It is shown that the ODEs undergo a Hopf bifurcation at the positive equilibrium when the prey refuge rate or the index- passed through some critical values. Time delay could be considered as a bifurcation parameter for DDEs, and using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650165 ◽  
Author(s):  
Haiyin Li ◽  
Gang Meng ◽  
Zhikun She

In this paper, we investigate the stability and Hopf bifurcation of a delayed density-dependent predator–prey system with Beddington–DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator–prey system conforms to the realistically biological environment. We start with the geometric criterion introduced by Beretta and Kuang [2002] and then investigate the stability of the positive equilibrium and the stability switches of the system with respect to the delay parameter [Formula: see text]. Especially, we generalize the geometric criterion in [Beretta & Kuang, 2002] by introducing the condition [Formula: see text] which can be assured by the condition [Formula: see text], and adopting the technique of lifting to define the function [Formula: see text] for alternatively determining stability switches at the zeroes of [Formula: see text]s. Afterwards, by the Poincaré normal form for Hopf bifurcation in [Kuznetsov, 1998] and the bifurcation formulae in [Hassard et al., 1981], we qualitatively analyze the properties for the occurring Hopf bifurcations of the system (3). Finally, an example with numerical simulations is given to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document