scholarly journals Variational Approaches for the Existence of Multiple Periodic Solutions of Differential Delay Equations

2010 ◽  
Vol 2010 ◽  
pp. 1-14
Author(s):  
Rong Cheng ◽  
Jianhua Hu

The existence of multiple periodic solutions of the following differential delay equation is established by applying variational approaches directly, where , and is a given constant. This means that we do not need to use Kaplan and Yorke's reduction technique to reduce the existence problem of the above equation to an existence problem for a related coupled system. Such a reduction method introduced first by Kaplan and Yorke in (1974) is often employed in previous papers to study the existence of periodic solutions for the above equation and its similar ones by variational approaches.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xuan Wu ◽  
Huafeng Xiao

<p style='text-indent:20px;'>In this paper, we study the existence of periodic solutions of the following differential delay equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} z^{\prime\prime}(t) = \sum\limits_{k = 1}^{M-1}(-1)^kf(z(t-k)), \notag \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ f\in C(\mathbf{R}^N, \mathbf{R}^N) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ M,N\in \mathbf{N} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ M $\end{document}</tex-math></inline-formula> is odd. By making use of <inline-formula><tex-math id="M4">\begin{document}$ S^1 $\end{document}</tex-math></inline-formula>-geometrical index theory, we obtain an estimation about the number of periodic solutions in term of the difference between eigenvalues of asymptotically linear matrices at the origin and at infinity.</p>


Sign in / Sign up

Export Citation Format

Share Document