scholarly journals Non-Self-Adjoint Singular Sturm-Liouville Problems with Boundary Conditions Dependent on the Eigenparameter

2010 ◽  
Vol 2010 ◽  
pp. 1-10
Author(s):  
Elgiz Bairamov ◽  
M. Seyyit Seyyidoglu

Let denote the operator generated in by the Sturm-Liouville problem: , , , where is a complex valued function and , with In this paper, using the uniqueness theorems of analytic functions, we investigate the eigenvalues and the spectral singularities of . In particular, we obtain the conditions on under which the operator has a finite number of the eigenvalues and the spectral singularities.

2014 ◽  
Vol 22 (2) ◽  
pp. 109-120
Author(s):  
Özkan Karaman

AbstractIn this paper, using the boundary properties of the analytic functions we investigate the structure of the discrete spectrum of the boundary value problem (0.1)$$\matrix{\hfill {iy_1^\prime + q_1 \left(x \right)y_2 - \lambda y_1 = \varphi _1 \left(x \right)\;\;} & \hfill {} \cr \hfill {- iy_2^\prime + q_2 \left(x \right)y_1 - \lambda y_2 = \varphi _2 \left(x \right),} & \hfill {x \in R_ + } \cr }$$ and the condition (0.2)$$\left({a_1 \lambda + b_1 } \right)y_2 \left({0,\lambda } \right) - \left({a_2 \lambda + b_2 } \right)y_1 \left({0,\lambda } \right) = 0$$ where q1,q2, φ1, φ2 are complex valued functions, ak ≠ 0, bk ≠ 0, k = 1, 2 are complex constants and λ is a spectral parameter. In this article, we investigate the spectral singularities and eigenvalues of (0.1), (0.2) using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (0.1), (0.2) has a finite number of spectral singularities and eigenvalues with finite multiplicities under the conditions, $$\matrix{{\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {\varphi _k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr {\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {q_k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr }$$ for some ε > 0, ${1 \over 2} < \delta < 1$


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Nihal Yokuş

We consider the operator generated in by the differential expression , and the boundary condition , where is a complex-valued function and , with . In this paper we obtain the properties of the principal functions corresponding to the spectral singularities of .


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Elgiz Bairamov ◽  
Nihal Yokus

LetLdenote the operator generated inL2(R+)by Sturm-Liouville equation−y′′+q(x)y=λ2y,x∈R+=[0,∞),y′(0)/y(0)=α0+α1λ+α2λ2, whereqis a complex-valued function andαi∈ℂ,i=0,1,2withα2≠0. In this article, we investigate the eigenvalues and the spectral singularities ofLand obtain analogs of Naimark and Pavlov conditions forL.


2015 ◽  
Vol 26 (10) ◽  
pp. 1550080 ◽  
Author(s):  
Esra Kir Arpat ◽  
Gökhan Mutlu

In this paper, we consider the boundary value problem [Formula: see text][Formula: see text] where λ is the spectral parameter and [Formula: see text] is a Hermitian matrix such that [Formula: see text] and αi ∈ ℂ, i = 0, 1, 2, with α2 ≠ 0. In this paper, we investigate the eigenvalues and spectral singularities of L. In particular, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities, under the Naimark and Pavlov conditions.


2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


Sign in / Sign up

Export Citation Format

Share Document