scholarly journals Molecular Diversity of miR390-Guided Transacting siRNA Precursor Genes in Lower Land Plants: Experimental Approach and Bioinformatics Analysis

Sequencing ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
M. S. Krasnikova ◽  
I. A. Milyutina ◽  
V. K. Bobrova ◽  
A. V. Troitsky ◽  
A. G. Solovyev ◽  
...  

Transacting siRNA loci (TAS3-like) of a particular plant species are usually represented by several gene families. PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant Bryophyta taxa, namely, class Bryopsida (subclasses Bryidae and Dicranidae) and class Sphagnopsida. We found relatives of all four Physcomitrella patens (subclass Funariidae) TAS3-like loci in subclasses Bryidae and Dicranidae. Only representatives of subclass Bryidae encoded TAS3-like genes belonging to P. patens TAS3a and TAS3d families. On the other hand, only the members of order Grimmiales (subclass Dicranidae) encoded gene relatives of P. patens TAS3c family. These data indicate that moss ta-siRNA families have been long conserved during land plant evolution. However, P. patens TAS3-like loci were detected neither in two Sphagnum species from the earliest diverged moss class Sphagnopsida, nor in the Selaginella kraussiana from the earliest extant tracheophyta lineage, Lycopodiopsida.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Maria S. Krasnikova ◽  
Denis V. Goryunov ◽  
Alexey V. Troitsky ◽  
Andrey G. Solovyev ◽  
Lydmila V. Ozerova ◽  
...  

PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of allPhyscomitrella patensmiR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing ofMarchantia polymorphagenomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads ofM. polymorphaat NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130355 ◽  
Author(s):  
Yuannian Jiao ◽  
Andrew H. Paterson

The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more ‘particulate’ understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.


2019 ◽  
Vol 319 (1) ◽  
pp. 1-43 ◽  
Author(s):  
Daniel E. Ibarra ◽  
Jeremy K. Caves Rugenstein ◽  
Aviv Bachan ◽  
Andrés Baresch ◽  
Kimberly V. Lau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document